
Type: Research paper

Title: Testable Use Cases in the Abstract State Ma-
chine Language

Abstract: Use cases are a method for describing inter-
actions between humans and/or systems. However,
despite their popularity, there is no agreed formal
syntax and semantics of use cases. The Abstract
State Machine Language (AsmL) is an executable
specification language developed at Microsoft Re-
search. In this paper we define an encoding of
use cases in AsmL and demonstrate the advantages
by describing techniques to generate test cases and
test oracles from the encoding.

Topics: Automated software testing, Conformance
testing, Formal methods

Author: Wolfgang Grieskamp, Microsoft Research,
One Microsoft Way, Redmond, WA 98052, USA,
Tel. +1-425-7075740, wrwg@microsoft.com

Author: Markus Lepper, TU Berlin, Franklin-
str. 28-29, 10587 Berlin, Germany,
lepper@cs.tu-berlin.de

Author: Wolfram Schulte, Microsoft Research, One
Microsoft Way, Redmond, WA 98052, USA,
schulte@microsoft.com

Author: Nikolai Tillmann, Microsoft Research, One
Microsoft Way, Redmond, WA 98052, USA,
t-niktil@microsoft.com

 markuslepper.eu

 IS
BN 0

-7
69

5-
12

87
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-1287-9

Testable Use Cases

in the Abstract State Machine Language

Wolfgang Grieskamp∗ Markus Lepper† Wolfram Schulte‡ Nikolai Tillmann§

Abstract

Use cases are a method for describing interactions be-
tween humans and/or systems. However, despite their
popularity, there is no agreed formal syntax and seman-
tics of use cases. The Abstract State Machine Language
(AsmL) is an executable specification language devel-
oped at Microsoft Research. In this paper we define an
encoding of use cases in AsmL and demonstrate the ad-
vantages by describing techniques to generate test cases
and test oracles from the encoding.

1 Introduction

Abstract state machines ([8]) describe the dynamic be-
havior of complex systems in an intuitive but mathe-
matically precise way. A wealth of ASM material is
found at [1]. AsmL is an advanced ASM-based exe-
cutable specification language developed at Microsoft
Research, which is intended to be used as a general no-
tation for modeling, analyzing and rapid prototyping
of components, devices and protocols. The language is
fully integrated into Visual Studio and provides native
COM connectivity and automation. It has been used
at Microsoft to specify significant parts of device proto-
cols and network components. A further application of
AsmL we envisage is to host semi-formal, domain spe-
cific notations which are mapped by transformation to
the core language, this way gaining semantics and tool
support.

In this paper we show one such application for AsmL,
presenting an encoding of use cases in AsmL. Use cases
([10]) are a method for describing interactions between
humans and/or systems which is applied in the require-
ments analysis phase. Despite their popularity, there
is no agreed formal syntax and semantics of use cases,
and thus no mechanical instrumentation for the pur-
pose of, e.g., validating the design and the implemen-
tation w.r.t. the requirements as they are expressed by
use cases.

The goals of this paper are twofold. On the one hand
it is a case study on the design of AsmL. On the other
hand we investigate and demonstrate the benefits of a
formalization of use cases by instrumenting them for
conformance testing. We present a fully operational test

∗Microsoft Research, Redmond, wrwg@microsoft.com
†TU Berlin, lepper@cs.tu-berlin.de
‡Microsoft Research, Redmond, schulte@microsoft.com
§Visiting Microsoft Research, t-niktil@microsoft.com

oracle as well as a test case generation algorithm, both
implemented in AsmL, working on our encoding of use
cases. These algorithms have been validated with the
implementation of AsmL.

This paper extends earlier work combining use cases
with Z [7]. Due to its orientation for AsmL, the use
case notation defined here is easier to comprehend for
engineers in comparison to the Z-based one given in [7].
Regarding conformance testing, we extend work prelim-
inary presented in [6].

2 What are Use Cases?

There is an ongoing discussion about syntax, semantics
and methodology of use cases in the software engineer-
ing community (see e.g. [3]). Opposed to the graphic
formalisms for combining use cases, e.g., by the “Use
Case Diagrams” offered by UML [10], the means for
specifying the contents of a single use case is not agreed
upon at all. The UML definition just states that “a use
case can be described in plain text, using operations,
in activity diagrams, by a state-machine, or by other
behavior description techniques. . . .” (cited from [5]).

Typically, if use cases are given in textual form, we
find documents as illustrated in Fig. 1, which repre-
sents (simplified) use cases for a cash dispenser. Note
the non-determinism in the specification regarding the
“bad” path for the case the card is invalid: use cases
are typically loose, keeping some or many details open,
which is intended feature on the level of requirements
specification.

We will use the following systematic understanding of
use cases, which is near to the one found in [4] and
similar to the one used in [7] and in [9]:

• The systems we observe are characterized by se-
quences of interactions. Sequences of interactions
are called dialogues.

• An interaction consists of information identifying
the actor and the action performed by this actor.
The actors involved in a dialogue are often one hu-
man and one technical system whose interactions
alternate, but in general also several humans can
talk to several machines, or machines can talk to
each other. The important methodological princi-
ple is that we only look at the observable behavior
of each actor as visible in an interaction, and that
all internal state of actors is hidden.

 markuslepper.eu

 IS
BN 0

-7
69

5-
12

87
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-1287-9

Goal user wants to draw money

State the cash supply of the dispenser

Good Path user sucessfully draws money
(1) machine asks for card
(2) user enters card
(3) machine asks for amount
(4) user enters amount less than supply
(5) machine ejects card
(6) user takes card
(7) machine ejects asked amount, supply decreases
(8) user takes money

Bad Path card is invalid
(1) machine asks for card
(2) user enters card
(3) machine ejects card
(4) user takes card

Bad Path not enough cash
(1) machine asks for card
(2) user enters card
(3) machine asks for amount
(4) user enters amount greater then supply
(5) machine ejects card
(6) user takes card

Figure 1: Use Cases for a Cash Dispenser

• A use case is described by a dialogue pattern, which
is essentially a dialogue (sequence of interactions)
with some variables used to bind parameters of ac-
tions.

• We have an (observable) global system state which
all use cases share. In the dialogue patterns, we
can describe how this state is transformed by an
interaction.

With this understanding, a set of use cases describes the
set of dialogues which can be obtained by concatenat-
ing the instances of the dialogue patterns in some order.
Note that we do not restrict the model to only two ac-
tors, as often found in the literature, e.g. [4]. Moreover,
we do not impose a priori that actors in dialogues al-
ternate.

3 A sketch of AsmL

Before we present the encoding of use cases in AsmL we
give a sketch of the language as far as it is needed for
this paper.

AsmL provides mathematical types and notations for
sets, maps and sequences as they are known from text
books and from pseudo-code. We will use these nota-
tions on an intuitive base throughout this paper, though
we should note that they are fully formalized.

There are two key aspects which distinguish AsmL from
other related notations: it has a full-fledged object and

component system (with COM and COM+ integration), and
it uses the ASM approach for dealing with state. We
will not use the object-orientation and hence skip this
part – but central for the ideas presented in this paper
is the treatment of state.

State is contained in variables. An abstract state ma-
chine computes stepwise, simultaneous updates on these
variables. When the machine executes assignments, it
does not actually change the variables, but just accu-
mulates a so-called update-set. If this update-set is
consistent (e.g., no assignments of different values to
the same variable have been queued) and the machine
makes it step, the update-set is committed and the vari-
ables change their state.

Consider the following fragment of a sorting algorithm:

var A as Seq Integer

until fixpoint

choose i ∈ domA, j ∈ dom A

| i < j and A(i) > A(j)
A(i) := A(j)
A(j) := A(i)

This machine performs a step in each iteration of the
until fixpoint loop. The two pointwise assignments to
the sequence just contribute to the update-set, which is
committed in each iteration. The loop terminates when
the last step has not committed any updates, thus as
soon as the sequence is sorted. Note that the choose

is non-deterministic, and hence we actually specify a
whole family of sorting algorithms like bubble sort or
quick sort.

A machine can be decomposed into sub-machines.
When a sub-machine works on variables defined in the
enclosing scope, it actually works on local copies, and
when it terminates, it adds the computed update-set
of the copies to the update-set of the enclosing subma-
chine. Consider the fragment:

var x as Integer = 1
var y as Integer

machine

x := x + 1
step

x := x + 1
y := x

In the context of the submachine (denoted by
machine . . . step . . .), after the step, the variable x de-
notes 2. However, in the enclosing context, x still has its
initial value 1. Thus, the update set created by the en-
tire fragment is x 7→ 3, y 7→ 1. Note that this way side-
effect freeness of computations is preserved in AsmL:
the order in which assignments are executed does not
matter. This contributes to a clean and simple math-
ematical semantics of AsmL, which supports building
reasoning tools for it.

 markuslepper.eu

 IS
BN 0

-7
69

5-
12

87
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-1287-9

AsmL provides an exception model similar to the one
found in C++ or Java. In conjunction with sub-
machines, if an exception is thrown, then the update-set
of the protected block is forgotten. Consider the follow-
ing fragment:

var x as Integer = 1
var y as Integer = 1
try

machine

x := x + 1
y := y + 2

step

y := x + 1
y := y + 1

catch e as CollisionException :
skip

The assignments to y with the distinct values of 2 and 3
in the second step of the sub-machine cause a collision.
As a consequence, an exception is thrown. On catch-
ing it, the updates produced for the variables x and y

are rolled back. The possibility to arbitrarly roll-back
updates is the key feature of AsmL which we will use
in this paper to formulate a test oracle and to generate
test cases by exploration.

4 Embedding Use Cases in AsmL

It is not our intention to propose a new notation for use
cases (see also Sec. 7). Instead, we envisage an adapt-
able refinement of existing conventions and notations
by annotations with AsmL. Fig. 2 shows how we may
annotate and refine the informal use case specification
from Fig. 1. The state is declared by an AsmL vari-
able supply of type MONEY , which is defined as the
subset of integers which are multiples of 10. The in-
teractions performed by the user and by the dispenser,
respectively, are declared next. In the paths, we then
annotate each step with an interaction pattern, given
as a term over an interaction and possibly free variables
and constraints, as in PutAmount(X | X ≤ supply).
Note that these kinds of term patterns are standard
AsmL. The scope of the free variables introduced this
way begins at the pattern and extends until the end of
the path.

The human-readable form of use-cases given in Fig. 2
is reduced to a core representation as shown in Fig. 3,
which is not intended to be visible for users. Our way
of encoding is as follows. A use case is given as a set

of transitions. A transition is a procedure which takes
an interaction as a parameter, possibly performs some
updates on the use case’s state, and updates the set
of successor transitions contained in the global variable
contin. We can view this as a (non-deterministic) au-
tomaton, where contin represents the automatons con-
trol state. There is, however, one important extension
compared to plain automatons: the next state is calcu-

Goal user wants to draw money

State the cash supply of the dispenser:

type MONEY =
{x ∈ Integer | x mod 10 = 0}

var supply as MONEY

Interactions user:

PutCard ; PutAmount(X ∈ MONEY)
TakeCard ; TakeMoney

Interactions dispenser:

AskCard ; AskAmount

EjectCard ; EjectMoney(X ∈ MONEY)

Good Path user sucessfully draws money
(1) machine asks for card

AskCard

(2) user enters card
PutCard

(3) machine asks for amount
AskAmount

(4) user enters amount less then supply
PutAmount(X | X ≤ supply)

(5) machine ejects card
EjectCard

(6) user takes card
TakeCard

(7) machine ejects asked amount, supply decreases
EjectMoney(X) · supply := supply − X

(8) user takes money
TakeMoney

Bad Path card is invalid
(1) machine asks for card

AskCard

(2) user enters card
PutCard

(3) machine ejects card
EjectCard

(4) user takes card
TakeCard

Bad Path not enough cash
(1) machine asks for card

AskCard

(2) . . .

Figure 2: Annotated Use Cases

lated dynamically, and may depend on the concrete in-
puts as they are found in the interactions. This applies
in the “good” path to the interaction PutAmount(X),
where the next states depend on X .

Note that in Fig. 3 we use an unusual indentation re-
garding nesting: the schema of an expression defining a
use case is

{λP1 · contin := {λP2 · contin := {. . .}}}

 markuslepper.eu

 IS
BN 0

-7
69

5-
12

87
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-1287-9

data IACT =
cases

PutCard ; PutAmount(X as MONEY)
TakeCard ; TakeMoney

AskCard ; AskAmount

EjectCard ; EjectMoney(X as MONEY)
type MONEY = {x ∈ Integer | x mod 10 = 0}
var supply as MONEY

var contin as Set [IACT → ()]
Good = {λ AskCard ·
contin := {λ PutCard ·
contin := {λ AskAmount ·
contin := {λPutAmount(X | X ≤ supply)·
contin := {λ EjectCard ·
contin := {λ TakeCard ·
contin := {λ EjectMoney(X ′ | X ′ = X) ·
supply := supply − X

contin := {λ TakeMoney ·
contin := ∅ }}}}}}}}

Bad1 = {λ AskCard ·
contin := {λ PutCard ·
contin := {λ EjectCard ·
contin := {λ TakeCard ·
contin := ∅ }}}}}

Bad2 = {λ AskCard ·
contin := {λ PutCard ·
contin := {λ AskAmount ·
contin := {λ PutAmount(X | X > supply) ·
contin := {λ EjectCard ·
contin := {λ TakeCard ·
contin := ∅ }}}}}}

CashDispenser = Good ∪ Bad1 ∪ Bad2

Figure 3: Reducing the Cash Dispenser’s Use Cases

.

A fully automatic transformation of use cases as given
in Fig. 2 to the core form in Fig. 3 is straight-forward:
the interaction patterns as found in the dialogue pat-
terns become arguments of the interaction procedures,
a set of which is assigned to contin in each step. Note
that our representation for use cases is more general as
needed for the example. In the example, branching (i.e.
where we assign not just a singleton set of continua-
tion functions) is only necessary for the top-level use
case as given by the value of CashDispenser . However,
in order to optimize the encoding, we might consider
to use factorization techniques when transforming the
dialogue patterns to core AsmL, introducing branching
on arbitrary nested levels. In principle, our encoding is
general enough to represent arbitrary non-deterministic
automatons or regular expressions of dialogue patterns.

var uc // contains the use case being tested

oracle(ucase, dialogue) =
machine

uc := ucase

contin := ucase

step

try

test(dialogue)
return true

catch NoMatchException :
return false

test(d) =
match d with

[] : // end of dialogue

if contin 6= ∅

throw NoMatchException

[a] + d ′ : // more interactions

if contin = ∅

// repetition

machine

contin := uc

step

test(d)
else

choose t ∈ contin | feasible(t , a, d ′)
skip // found feasible transition

ifnone // found none

throw NoMatchException

feasible(t , a, d) =
try

machine

t(a)
step

test(d)
return true

catch NoMatchException :
return false

Figure 4: Test Oracle

5 Test Oracle

Fig. 4 defines a function which tests whether a given
dialogue matches a use case. It is based on the proce-
dure test(d) which succeeds if the dialogue d confirms
to the use case, and otherwise throws an exception. test

uses the function feasible(t , a, d ′) which decides whether
the transition t , if applied to the interaction a, is fea-
sible such that the remaining dialogue d ′ confirms to
the use case. We use exceptions and sub-machines as
explained in Sec. 3 to realize the backtracking required
for the test oracle. If, in the recursive call to test in-
side of feasible, a dead-end is encountered, the exception
NoMatchException will be thrown, and all updates on
the control variable contin as well as any state vari-
ables of the concrete use case model, like the supply of

 markuslepper.eu

 IS
BN 0

-7
69

5-
12

87
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-1287-9

the cash dispenser, are undone. NoMatchException is
thrown if a procedure is applied to a non-matching pat-
tern (i.e. if in t(a), a is not in the domain of t), or if
the dialogue ends but there is a continuation expected
by the use case. Note that in the case that contin = ∅,
but there are still interactions, we simply reinitialize
contin with the use case’s start transitions. This mod-
els the one or more times repetition of the behavior has
described by the use case.

6 Test Generation

We present a method which produces a set of dialogues
for a given use case specification, systematically cov-
ering the scenarios as given by the specification. The
method is based on information which is utilized in ad-
dition to the specification:

• a finite set of actions, called the representative ac-

tions ;

• an equivalence relation on the state of the specifi-
cation, characterizing what we call hyper states [6].

The algorithm for test case generation computes all
paths to states which can be reached using one of the
representative actions. A path is terminated if a hyper
state is visited for the second time.

A hyper state is a set of concrete states which are consid-
ered as equivalent. Hyper states group infinitely many
states into finitely many ones. There are several pos-
sibilities to define hyper states. In [6] we character-
ized a hyper state as the set of those concrete states
which cannot be distinguished by any of the guards of
the actions of an ASM. Applied to our use case model,
guards amount to the predicates we find in the dialogue
patterns, such as X ≥ supply and X < supply in the
cash dispenser example. Using this approach, to decide
whether two concrete states are equivalent, we simply
evaluate the guards in the compared states to a vector
of booleans and compare the results. For details and a
theoretical discussion, see [6].

Fig. 5 defines the algorithm. We assume some abstract
type STATE which can represent a dump of the vari-
able assignments of our use case model. The function
getState() extracts such a representation from the cur-
rent variable assignments; the function setState(s) re-
stores it. The representative actions are contained in
reprs . Our equivalence relation is named operator ∼.

A test case is represented as an initial state and a test
tree. A test tree branches over interactions until it
reaches a terminal state. Each of the paths in the tree
represents one possible run of our use case, starting from
the initial state of the test case. The function explore

calculates such a test tree, using exceptions as done in
the previous section for test evaluation to model back-
tracking.

type STATE

getState() as STATE

setState(s as STATE)
reprs as Set IACT

operator ∼ (s asSTATE , s ′ asSTATE) asBoolean

initialState as STATE

data TestTree =
cases

Branch(bs ∈ Set [IACT × TestTree])
Leaf (end as STATE)

reach(Leaf (t)) = {t}
reach(Branch(ts)) =

⋃
{reach(t) | (, t) as ts}

var tcases as Set [STATE × TestTree] = ∅

var working as Set STATE = {initialState}
explore() =

if contin = ∅

throw Leaf (getState())
else

step

var bs as Set [IACT × TestTree] = ∅

foreach t ∈ contin, a ∈ reprs

try

step

t(a)
step

explore()
catch b ∈ TestTree :
bs := bs ∪ {(a, b)}

catch NoMatchException :
skip

step

throw Branch(bs)
gen(uc) =

while working 6= ∅

choose s ∈ working

step

setState(s)
contin := uc

step

try

explore()
catch t ∈ TestTree :

step tcases := tcases ∪ {(s, t)}
step working :=

working \ {s}

∪ {s ′ ∈ reach(t) |

¬ ∃(s ′′,) ∈ tcases · s ′ ∼ s ′′}

Figure 5: Test Generation

 markuslepper.eu

 IS
BN 0

-7
69

5-
12

87
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-1287-9

The main function of the algorithm, gen(uc), computes
a set of test cases using a working set of states which
need to be explored. In each iteration of gen(uc), we
remove one state from the working set and generate a
test case for it. To the working set we add those reached
states (leaves) of the test case for which we have not
already generated a test case with an equivalent starting
state.

The termination of gen depends on whether the reach-
able states are actually partitioned into a finite number
of hyper states. The reachable states are those which
can be computed by using only the interaction repre-
sentatives.

As an example, consider again the cash dispenser, Fig. 2.
Define the set of interaction representatives as follows:

{PutCard ,PutAmount(100),TakeCard ,TakeMoney ,
AskCard ,AskAmount ,EjectCard ,EjectMoney(100)}

Choose equality on the state (which is just the cash
supply) for the equivalence relation. As an initial state
use supply = 150. After flattening the test trees, we get
the following four dialogues together with start and end
states. Each dialogue represents one pass through the
use case.

(150, [AskCard ,PutCard ,EjectCard ,TakeCard], 150)
(150, [AskCard ,PutCard ,AskAmount ,PutAmount(100),

EjectCard ,TakeCard ,EjectMoney(100),

TakeMoney], 50)
(50, [AskCard ,PutCard ,EjectCard ,TakeCard], 50)
(50, [AskCard ,PutCard ,AskAmount ,PutAmount(100),

EjectCard ,TakeCard], 50)

7 The Larger Picture

We presented the formal encoding of use cases in AsmL,
and algorithms for instrumenting the encoding for test
evaluation and generation. However, how the encod-
ing from a concrete representation as given in Fig. 2 is
obtained has been left open.

In fact, since the target of our efforts is the development
of tools of practical usage in concrete engineering con-
texts, there must be a further adaptive frontend layer

for smooth integration into existing industrial processes.
We cannot suggest a particular notation from a point of
research: from company to company, from application
domain to application domain different standards and
conventions exist how to denote use cases.

The envisaged architecture which supports the neces-
sary flexibility is sketched in Fig. 6:

• Tool adaptors normalize the specific tool and docu-
ment representation, converting it to XML. For ex-
ample, an MS-Word document may be converted
into an XML format. This representation may,
however, still contain domain specific elements.

abc()

z
xy

.XML

.AsmL

Testcase
GenerationA

S
M
L

.reports

 Adaptors

 Adaptors
Tool

Domain

Testresult
Evaluation

Visual Feedback

System Under Test
 ("in the loop")

Figure 6: Tool Architecture

• Domain adaptors extract from the XML the ac-
tual AsmL source, normalizing the domain specific
parts.

Next our test generation and evaluation techniques may
apply. Thereby, it is of utmost importance that we
have propagated backlinks to the locations in the orig-
inal sources through the transformation pipeline, since
any kind of diagnostics and visual feedback has to be
associated with this level.

8 Related Work and Conclusion

We have presented an encoding of use cases in the
Abstract State Machine Language, AsmL, and in-
strumented it for test evaluation and test generation,
demonstrating the potential benefits a formalization of
semi-formal notations can yield.

The semantic interpretation of use cases we gave follows
the one we initially defined in [7]. [9] takes an almost
identical approach w.r.t the basic choice of the repre-

 markuslepper.eu

 IS
BN 0

-7
69

5-
12

87
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-1287-9

sentation and all “political” statements are similar to
ours. In contrast to [9], however, we regard the concept
of an internal choice not compatible with a specification
tool like use cases, and instead prefer to view branch-
ing in use cases as “angelic”. Another interesting but
quite different approach to formalize use cases is found
in [2], which translates the ”informal meaning” of use
cases into a calculus of contracts. This work aims at an-
alyzing conditions and reasoning – breaking down the
contracts to primitive state relations would yield the
same semantic basis as in the other papers.

The contribution of this paper is not primarily seen in
the semantic foundation and understanding of use cases,
which was discussed in previous papers, but in working
towards a feasible approach for the practice, which in-
cludes an notation acceptable for engineers as well as
instrumentation for urgent problems in software produc-
tion, like testing. To this end, we have shown that the
AsmL notation helps as a host language for use cases.
On the one hand, it supports a style of notation similar
to pseudo code which is common to most engineers and
suitable for describing the state associated with a use
case. Though in the toy example of the cash dispenser
the state was trivial, in more real world examples conve-
nient notations for sets, finite mappings, free data types
and propositions are required, which are an expertise of
AsmL. On the other hand, AsmL allows also to formu-
late the meta algorithms for utilizing use cases – like
the test oracle and test generation algorithms we gave.

The application to testing gives an important motiva-
tion for using systematic and well-founded methods in
software engineering. Our approach provides a realistic
scenario for black-box, conformance testing. The test
generation based on use cases will remain an interactive
process, since a human test engineer is still required to
assign priorities to test sequences and make ad-hoc de-
cisions like selecting representative actions; however, in
comparsion to classical test engineering, a much higher
degree of automatization can be achieved.

REFERENCES

1 ASM Michigan Webpage. http://www.eecs.

umich.edu/gasm.

2 Ralph-Johan Back, Luigia Petre, and Ivan Porres
Paltor. Formalising UML Use Cases in the Refine-
ment Calculus. Technical Report No. 279, Turki
Center for Computer Sciene, may 1999.

3 Edward V. Berard. Be careful with ”use cases”.
Technical report, The Object Agency, Inc., 1998.
http://www.toa.com/pub/use_cases.htm.

4 Greg Butler, Peter Grogono, and Ferhat Khende. A
Z specification of use cases. In Proc. of the Asia-

Pacific Software Engineering Conference and Inter-

national Computer Science Conference, pages 505–
506. IEEE Computer Society Press, 1997.

5 Derek Coleman. A use case template: draft for dis-
cussion, 1998. Hewlett-Packard Software Initiative.

6 Wolfgang Grieskamp, Yuri Gurevich, Wolfram
Schulte, and Margus Veanes. Testing with Abstract
State Machines. In Roberto Moreno-Diaz and Alexis
Quesada-Arencibia, editors, Formal Methods and

Tools for Computer Science – EUROCAST’01 – Ex-

tended Abstracts. University de Las Palmas, Febru-
ary 2001.

7 Wolfgang Grieskamp and Markus Lepper. Using Use
Cases in Executable Z. In ICFEM 2000 – IEEE Con-

ference on Formal Engineering Methods, September
2000.

8 Yuri Gurevich. Evolving algebras 1993: Lipari guide.
In Egon Börger, editor, Specification and Validation

Methods, pages 9–36. Oxford Univ. Press, 1995.

9 Perdita Stevens. On Use Cases and Their Rela-
tionships in the Unified Modelling Language. In
FASE’01, 2001. to appear.

10 Uml semantics version 1.3. http://www.rational.
com/uml/index.jtmpl.

 markuslepper.eu

 IS
BN 0

-7
69

5-
12

87
-9

http://markuslepper.eu
http://www.worldcat.org/search?q=0-7695-1287-9

