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Zusammenfassung

Diese Arbeit präsentiert und diskutiert einen Algorithmus, der das Verhalten
eines beliebigen dynamischen Systems (= System Under Test = SUT) mit einer
Spezifikation vergleicht, die eine Menge von erlaubten Verhaltensweisen beschreibt.

Der Algorithmus wird definiert durch eine rein funktionale mathematische
Darstellung, und seine Vollständigkeit, Korrektheit, Terminierung und Konfluenz
werden bewiesen.

Der Algorithmus arbeitet in Realzeit, insofern als er gleichzeitig mit dem SUT
ausgeführt wird, und zu jedem Zeitpunkt ein Verdikt liefert, ob das Verhalten des
SUT bis jetzt eine Erfüllung der Spezifikation noch erlaubt oder gar bereits im-
pliziert.

Die Spezifikationen werden in einer eigenen, aber durchaus kanonischen Sprache
erstellt, welche die bekannte Syntax und Semantik von regulären Ausdrücken erweit-
ert um die konjunktive Verknüpfung und um die Bedingungen bezgl. minimaler und
maximaler Dauer von Unterausdrücken. Ein Spezifikationsausdruck beschreibt eine
Menge von erlaubten Verhaltensweisen unmittelbar, insofern als eine syntaktische
Folge von Unterausdrücken direkt der zeitlichen Abfolge von Unterabschnitten des
Verhaltens entspricht.

Die Ausdrucksfähigkeit der Spezifikationssprache entspricht einer temporalen
Intervallogik zuzüglich Dauernanforderungen als first class residents, aber ohne
Negation. Die Grundlage ihrer Semantik und der Arbeitsweise des Algorithmus
ist die Arithmetik von Intervallen über R.

Der Algorithmus bedarf, um auf ein beliebiges System angewandt zu wer-
den, der Implementierung einer jeweils entsprechenden Adaptiven Schicht. Die An-
forderungen an diese werden in der Arbeit spezifiziert.

Der Algorithmus ist Kernbestandteil des im industriellen Kontext entwickel-
ten Werkzeugs ATCH, welches als Bibliotheksbaustein für die MATLAB/simulink-
Umgebung implementiert ist, und für die Auswertung von Testdaten eingesetzt
werden soll. Darüber hinaus enthält das Werkzeug eine Instanz der Adaptiven
Schicht, welche im Haupttext erläutert wird, und realisiert eine programmierbare
und zwei graphische Benutzerschnittstellen, welche in den als Anhang beigefügten
Handbüchern beschrieben werden.
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Chapter 1

Introduction

1.1 Subject of this text

The following text presents, discusses and proves the correctness of an algorithm
which compares the behaviour of a arbitrarily defined dynamic system (= system
under test = SUT ) with a specification (= SpecUT ) which describes a set of per-
mitted behaviours.

The specification is given as an expression from a corresponding specification
language. The expressiveness of this language is that of a temporal interval logic
over a dense domain, including duration specifications as first class residents, and
excluding negation. The basis of its semantics, and of the operation of the algorithm,
is the arithmetic on intervals from R.

The algorithm works in real-time: while monitoring the growing prefix of the
known behaviour of the SUT, it frequently generates verdicts indicating whether
the complete behaviour of the SUT will finally fulfill or violate the specification, or
whether this is currently still inconclusive.

The real-time instant, when the algorithm’s execution starts, serves as reference
point for the semantics of the specification. An ending time instant of the SUT’s
behaviour may or may not be given, i.e. the algorithm can monitor finite or infinite
real-time intervals of execution.

Any kind of SUT can be monitored by the algorithm, if an adaptive layer is
provided which transforms the observation data into the required input format.

Currently both, the algorithm and an instance of this adaptive layer, are im-
plemented in the ATCH tool. This tool is realized as a so-called “function block”
in the MATLAB/simulink environment [12][13]. Its development has been finan-
cially supported by DaimlerChrysler/FT3/SM, where simulink models are used for
model-based development, and ATCH shall be used in course of automated test
evaluation.

Since the algorithm described herein is the central part of any such tool im-
plementation, it is called kernel algorithm in the following. Currently (November
2003) the author is applying for a European patent on the kernel algorithm.
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Chapter 1. Introduction

1.2 Structure of this text

The following text is structured as follows :

• Chapter 2 describes the conditions an environment has to fulfill to make the
kernel algorithm applicable, and the rules for calling its interfaces.

• Chapter 3 defines the language of the specifications treatable by the algorithm.
• Chapter 4 gives an informal description of the algorithm’s operation and of

discusses the major design decisions.
• Chapter 5 presents the algorithm as a collection of mathematical functions.
• Chapter 6 proves the correctness, completeness, confluence and termination of

the algorithm.
• Chapter 7 shows the differences of the solution contained herein to other ap-

proaches.

Since the formulæ constituting the algorithm are frequently referred to by the
proofs in chapter 6, it has been considered more convenient for the reader to present
them in an outmost compact way in their own dedicated chapter 5, and not to mix
them with explanations which all are gathered into chapter 4.

A survey of the globally used notations and abbreviations, and the technical
manual of the ATCH tool and a tutorial on writing specifications, both requested
by DaimlerChrysler/FT3/SM, are included as appendices.
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Chapter 2

Context of the Algorithm’s
Operation

2.1 Real-Time Input Data and Adaptive Layer

The algorithm is applied to an SUT by combining the executions of both during a
certain interval of real-time. This interval is called session interval (or session) in
the following. Each session interval has a certain known time instant as its starting
point.

During a session the information which represents the behaviour of the SUT
flows from the SUT to an adaptive layer, and from the adaptive layer to the kernel
algorithm, see figure 2.1.

The observable behaviour of an SUT is constituted by a collection of functions
from the session interval into arbitrary ranges. These functions are called SUT
functions in the following.1

The kernel algorithm takes as input data (1) an abstract syntax representing
the specification, (2) a few additional configuration parameters, and (3) a real-time
data stream, representing the SUT’s behaviour.

Data of kind (1) and (2) are passed to the algorithm once at set-up time, i.e.
shortly before or exactly at the time instant when the session starts.

The third kind of input data, the real-time data stream, consists of a discrete
representation of a finite indexed collection of functions from the session interval
into the set of Boolean values. These functions are called observation functions (or
simply observations) in the following.

The collection of all observation functions used in a certain session is called
trace in the following. All collections of these functions restricted to one common
cohesive, non-zero interval of real-time are called sub-traces of the trace, and are
also considered to be traces.

The objects used for indexing the observation functions of a given trace are
called atomic predicates in the following.

1In the context of test evaluation and of industrial tools, these functions are often called PTOs ,
i.e. “Points of Test and Observation”. This wording is also used in the tutorial in appendix C.
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Chapter 2. Context of the Algorithm’s Operation

It is the task of the adaptive layer to continuously derive the required observa-
tion functions from the SUT functions.

While there are no further assumptions on the structure of the SUT functions,
it is an essential requirement for the operation of the kernel algorithm that all
observation functions are of finite variability , cf. section 4.7.7 on page 30.

This means that in each observation function the points of discontinuity are
separated by a distance not smaller than a certain, positive distance δSEP . This
property is also known as non-Zenoism. This requirement is only existentially
qualified: The value δSEP must exist theoretically, but it need not be known in
advance, nor does its value influence the semantics of the algorithm.

The transmission of the current values of the observation functions from the
adaptive layer to the kernel algorithm is realized by a discrete representation: When-
ever the former detects at a certain time instant a discontinuity of one or more
observation functions, it calls an interface procedure (iNotify(), see section 4.1 be-
low). This call is parameterized (1) with a time stamp value, identifying the current
time instant, and (2) a collection of Boolean values indexed by all atomic predi-
cates. These values are those which the corresponding observation functions will
take immediately after this point of discontinuity.

Due to the finite variability of all observation functions it is guaranteed that
these newly taken values will stay stable for some non-zero duration.

2.2 Deriving Observation Functions from SUT

Functions

Basically there are two kinds of SUT functions from which observations can be
derived, namely analog signals and event streams.

Analog signals may be either produced by analog/digital-converter hardware
(ADCs), when observing a real physical system, or by a digital simulation model
which delivers representations of analog values in discrete steps using e.g. an equation
solver.

In both cases the technical representation is discrete, namely a sequence of
pairs of time instants and range values, while — just contrarily — the intended
semantics are those of a total function from a dense domain into a dense scalar range.
According to Shannon’s theoreme [18], the mapping between representation and
semantics is unique, if a certain maximal bandwidth of the intended dense function
is assumed.

From SUT functions of this kind the Boolean valued observation functions can
be derived by applying arithmetic comparison operators either to one or two SUT
functions directly, or after feeding them through arbitrarily defined signal processing
networks.

In most cases it is advisable to use only the comparison operators < and ≤,
and to avoid the usage of =, i.e. the exact equality. With the former, the bandwidth
of the resulting observation function is almost totally determined by the intended
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2.2. Deriving Observation Functions from SUT Functions

Figure 2.1 Flow of Data: Specification, SUT Signals, Observations and Verdict

SUT
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Kernel
Algorithm
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SpecUT
MWatch
Compiler
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verdict
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Chapter 2. Context of the Algorithm’s Operation

semantics. But when using the exact equality, the result depends highly on the
kind of discrete representation chosen by the implementation layers of the SUT,
e.g. the ADC drivers or the kind of solving algorithm currently selected by the
simulation framework, — things which should be abstracted from when dealing
with the semantics of a model.

Event streams can be regarded as functions from time to Boolean, which take
the value “true” only at single, isolated points of the dense real-time domain. These
SUT functions can be translated into valid observation functions by replacing each
such spike by the positive edge of a pulse of arbitrary non-zero duration.

The specification term passed to the kernel algorithm must be written accord-
ingly, so that it waits only for the positive edges of the observation function for
detecting an SUT event, and uses negative edges only for distinguishing between
subsequent events in the same SUT function.

2.3 Configuring the Adaptive Layer in the

ATCH Tool

For the kernel algorithm, the adaptive layer and the translations from SUT functions
into observation functions are totally invisible.

But from the user’s point of view these translations correspond to the defini-
tions of the atomic predicates, which are an integral part of their specification.

This point of view is supported by the current implementation of the ATCH
tool: its input language integrates the means for defining all the different processing
steps mentioned above into one single front-end representation.

This corresponds to a layered structure of the syntax definition of the tool’s
input language:

• As basic elements there are path expressions, each of which addresses a certain
outlet of a certain simulink function block contained in the SUT. So these
expressions directly correspond to the SUT functions.

• From these elements — together with denotations of numeric constants —
arithmetic and signal processing expressions can be constructed.

• On these expressions comparison operators can be applied, yielding Boolean
valued functions.

• These can further be combined using logical operators, finally yielding the
observation functions.

• At the top level, the behavioural specification is constructed by combining the
observation functions using the temporal operators from the kernel specifica-
tion language (see chapter 3 below).

The compiler part of the ATCH tool translates a specification text into a
sequence of MATLAB commands, the execution of which inserts a so-called “masked
sub-system” into the simulink model representing the SUT.
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2.3. Configuring the Adaptive Layer in the ATCH Tool

This sub-system includes the instance of a predefined function block, which
encapsulates the implementation of the kernel algorithm, and a signal processing
network realizing the adaptive layer according to the user’s specification.

In the compilation process the different layers of the specification are separated:

• The top level temporal specification is compiled into the input format of the
kernel algorithm’s implementation. This format includes only a skeleton, con-
sisting of the temporal combinators of the kernel specification language, and
of atomic predicates which uniquely identify observation functions.
All expressions below the level of the temporal combinators are treated as
implicit definitions of observation functions and replaced by the corresponding
atomic predicate.

• The arithmetic expressions, signal processing commands, comparison opera-
tions and logical combinations contained in these extracted definitions of ob-
servation functions, are translated into MATLAB code which set up the signal
processing network of the sub-system accordingly.

• Each path expression addressing a function block outlet, i.e. an SUT function,
is translated into MATLAB commands which attach a so-called “goto block” to
this outlet. Thereby the signal of this SUT function is fed into the processing
network of the created sub-system.

Consider as an example the following fragment of a specification in the tool’s
specification language (the temporal combinators MIN, MAX and ; will be explained
in chapter 3):

...; MAX 5 abs(vehicle speed - 3.2*throttle) >= MYCONST ;

MIN 0.25 MAX 1.25 engine/rpm - delay(engine/rpm, 2.7) < 35 ; ...

This fragment will be translated into two different groups of definitions, notated
symbolically like . . .

p4 = . . .
p5 = abs(vehicle speed - 3.2*throttle) >= MYCONST ;

p6 = engine/rpm - delay(engine/rpm, 2.7) < 35

p7 = . . .
...; MAX 5 p5 ; MIN 0.25 MAX 1.25 p6 ; ...

Figure 2.2 shows the optical appearance of an ATCH function block and some
“goto” blocks, inserted into one of the standard demonstration models contained
in the MATLAB/simulink distribution, — figure 2.3 shows a corresponding signal
processing network hidden behind the mask of the “masked sub-system”.

For a complete syntax for defining the signal processing processing network of
the adaptive layer, please refer to the Technical Manual included as appendix B.

7 markuslepper.eu

 

http://markuslepper.eu
http://www.worldcat.org/search?q=


Chapter 2. Context of the Algorithm’s Operation

Figure 2.2 The ATCH Tool Applied to a MATLAB/simulink Standard Example

Figure 2.3 A Signal Processing Network Realizing an Adaptive Layer
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Chapter 3

The Temporal Specification
Language

3.1 Syntax

The specifications which can be processed by the kernel algorithm are all finite terms
which are produced by the following recursive rule:

S ::= pk | ANY

| MIN d S | MAX d S | S1 ; S2

| OR {S1 , . . . , Sm} | AND {S1 , . . . , Sn}
| REP S | OPT S

pk ::= p1 | p2 | p3 | . . .

3.2 Informal Semantics

The semantics of each specification term corresponds to the set of traces which fulfill
this specification1.

Applying the kernel algorithm to a certain specification and to a trace which is
known to be complete (which means that the test session which produces the trace
is finished) can yield two different results, which are called final verdicts : If the
trace fulfills the specification, the algorithm will yield the verdict pass, otherwise it
will yield failed.

Since the algorithm works in real-time, it is frequently supplied with a steadily
growing prefix of the trace, representing the “already known” prefix of the behaviour
of the SUT. In the case that this prefix is not yet complete, i.e. the session is known
to be continued, the verdict generated by the algorithm is called early verdict value,
and has a slightly different meaning:

1The notion of trace has been defined above in section 2.1. A trace is a collection of observation
functions, defined on one common, cohesive interval of real-time, and represents the behaviour of
an SUT during a (sub-interval of a) session.
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Chapter 3. The Temporal Specification Language

• pass means that the trace will fulfill the specification in any case, i.e. each
possible completion of the prefix trace will yield a trace which fulfills the
specification.

• fail means that there exists no single completion of the prefix which will
fulfill the specification.

• inconc (read “inconclusive”) means that the algorithm is not yet able to decide
between these two cases. This case is discussed in more detail in section 6.5.3.

The verdicts pass and fail are commonly called conclusive verdicts.

The semantics of the syntactic constructs in terms of the fulfillment relation
are defined as follows:

• An atomic predicates pk identifies an observation function, as described above
in section 2.1. Used as a specification term, it is fulfilled by all those traces in
which the value of this observation function is continuously true.

• The specification ANY is fulfilled by any trace.
• The constructs MIN d S and MAX d S represent duration requirements. The

value of d has to be some positive, non-zero numeric value. This kind of
specification is fulfilled by all those traces which fulfill S and additionally have
a duration which is larger or equal / less or equal to d .

• The chop construct2 S1;S2 is fulfilled by all traces which can be divided at
some inner time instant into two adjacent sub-traces, the first of which fulfills
S1 and the second fulfills S2.

• A specification like AND {S2, S1} is called conjunctive specification and is ful-
filled by all traces which fulfill S1 and S2.

• A specification like OR {S1, S2} is called disjunctive specification and is fulfilled
by all traces which fulfill S1, or which fulfill S2, or which fulfill both.

• The specification REP S denotates the disjunction of arbitrarily many,
non-zero repetitions of S combined by the chop operator ; . Its se-
mantics would be identical with those of the infinite specification term3

OR {(S ), (S ; S ), (S ; S; S ), (S ; S; S; S ), . . .}.
It is fulfilled by all traces which fulfill one or more of these chop expressions.

• The specification OPT S makes sense only as an argument of the chop construc-
tor ; : it denotates an optional specification which may be considered part of
the specification, but which does not need to be fulfilled if this is not required
by the context.
Indeed it is just a convenient front-end shortcut notation for a dis-
junction construct. E.g. the specification p1 ; OPT p2 ; p3 is equivalent to
OR {(p1 ; p2 ; p3), (p1 ; p3)}.

For some instructive examples of specifications written in this language S and
for some illustrating diagrams of the timing of early verdicts please refer to the
tutorial which is included as appendix C.

2The naming “chop operator” has first been used in the definition of the duration calculus, cf.
[3] and chapter 7, which is on related work.

3This infinite term itself is not a member of the front-end specification language, which is
restricted to finite terms derivable from S .
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3.3. Formalized Semantics

3.3 Formalized Semantics

The formal definition of the semantics of the specification language is based on
the definitions of data types and auxiliary functions in table 3.1. In the following
formulæ the µ operator, which selects the single element contained in a given set, the
treatment of functions as relations, and the mapping operator (|. . .|) are borrowed
from the Z notation [19].

The basic data types are the set of Boolean values, the set T for representing
time, and the set D for representing durations, i.e. positive or zero-valued distances
between time instants.

The set P+ contains all atomic predicates indicating an observation function,
while the set P additionally includes p0, an internally defined auxiliary atomic pred-
icate which corresponds to an observation function which for each time instant
always delivers true. This object is used later in the implementation to treat the
specification ANY in a uniform way like the atomic predicates.

lb and ub deliver the sets of lower and upper bounds for a given set of time
instants, and glb and lub are functions which deliver the (always uniquely defined)
greatest lower bound and least upper bound.

Using these functions the set of all non-empty traces R+ is defined as the set of
all functions from time T and the atomic predicates P to the Boolean values, which
are restricted to a certain non-empty interval, and which are in this interval total
w.r.t T and to P .

The set of traces R additionally includes the empty trace, which is written
simply as an empty relation {}. It is used solely for modeling the semantics of the
OPT operator.

The function conc : R×R→R is needed for modeling the chop operator: It
takes two traces and concatenates them. In case that one of the traces is empty, the
concatenation result is just the other trace. In case that both traces are non-empty,
(1) the domain of the second trace is shifted by composing it with an appropriate
transposition function, so that it starts exactly when the first trace ends, and then
(2) both functions are combined by superposition.

Note that the definition of R does not specify whether the domain intervals are
open, closed or half-open. Therefore the domains of both functions are disjoint after
the transposition of the second trace, except possibly for the point lub(r1), where
possibly both functions are defined or undefined.4

The function combine operates on collections of traces, and delivers the con-
catenations of all combinations between the elements of both sets.

For each non-terminal N from a syntax defining grammar the expression LN
shall denotate the corresponding language, i.e. the set of all derivable finite sentences.

Then the semantics of the grammar S as defined in section 3.1 can be formally

4Because of the finite variability of all observation functions, cf. page 4 above, both kinds of
conflicts can be resolved by choosing one of only two canonical alternatives. Strictly spoken, conc

delivers a set of one or two resulting traces. For the sake of readability, this idiosyncratic fact has
not been formalized in table 3.2 and 3.1.
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Table 3.1 Data Types and Auxiliary Functions for Defining the Semantics of Spec-
ification Expressions

Boolean = {false, true}
T = R≥0.0

D = R≥0.0

P+ = {p1, p2, . . . , pmaxp}
P = P+ ∪ {p0}

lb(T : set of T) : set of T = {t : T | (¬ ∃ t2 ∈ T • t2 < t) }
ub(T : set of T) : set of T = {t : T | (¬ ∃ t2 ∈ T • t2 > t) }
glb(T : set of T) : T = µ{t ∈ lb T | (¬ ∃ t2 ∈ lb T • t2 > t) }
lub(T : set of T) : T = µ{t ∈ ub T | (¬ ∃ t2 ∈ ub T • t2 < t) }

R+ = {r : T → P → Boolean
| glb (dom r) < lub (dom r)
∧ ∀ t ∈ T | glb (dom r) ≤ t < lub (dom r)

=⇒ t ∈ dom r ∧ P = dom(r t)}

R = R+ ∪ {{}}

conc(r1 : R, r2 : R) : R =















if r2 = {} then r1

if r1 = {} then r2

otherwise
r1 ⊕ (r2 ◦ (λ t • t − glb (dom r2) + lub (dom r1) ) )

combine (w1 : set of R,w2 : set of R) : set of R
= λ x1, x2 • conc (x1, x2) (|w1 × w2|)

defined by a function [[ ]]L : L S → P R, which maps each specification expression
to the set of those traces which fulfill this specification.

This function is defined in table 3.2. The informal description of the semantics
from section 3.2 can be used as a legend: The wording “the trace r : R fulfills the
specification s : L S” used above is totally equivalent to the statement “r ∈ [[s]]L ”.
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Table 3.2 Formal Semantics of the Specification Language S

[[ ]]L : L S → set of R
[[pk ]]

L = {r ∈ R+ | ∀ t ∈ dom r • r(t)(pk ) = true}
[[ANY]]L = R+

[[MIN d ANY]]L = {r : R | glb (dom r) − lub (dom r) ≥ d}
[[MAX d ANY]]L = {r : R | glb (dom r) − lub (dom r) ≤ d}
[[MIN d s]]L = [[MIN d ANY]]L ∩ [[s]]L

[[MAX d s]]L = [[MAX d ANY]]L ∩ [[s]]L

[[s1 ; s2]]
L = combine ([[s1]]

L, [[s2]]
L)

[[AND {s1, . . . , sn} ]]L = [[s1]]
L ∩ . . . ∩ [[sn ]]L

[[OR {s1, . . . , sn} ]]L = [[s1]]
L ∪ . . . ∪ [[sn ]]L

[[REP s]]L = [[s]]L ∪ [[s ; REP s ]]L

[[OPT s]]L = [[s]]L ∪ {{}}
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Chapter 4

Informal Description of the Kernel
Algorithm

4.1 Interfaces and Usage

The kernel algorithm is constituted by the definitions of three interface functions
the implementations of which must be called by an implementation of the adaptive
layer, as sketched out above in section 2.1 on page 4.

The algorithm operates by applying transformations to a state.

In the definitions of the kernel algorithm in chapter 5 this state is modeled as
a value of type GState.

Since the algorithm is defined as a collection of pure functions, this state must
be explicitely threaded by the adaptive layer through all calls of the algorithm’s
interface functions. The adaptive layer must handle this value transparently, which
means to use the same, unmodified state value for each function call which has been
returned by the preceding function call.

The three interface functions have to be used as follows:

• Before the start of a test session the interface function iInit() is called for
creating an initial state for the algorithm, according to the specification term
passed as an argument. This specification term is called SpecUT in the follow-
ing.
Additionally the maximal duration of the test session can be given to iInit()
by the parameter maxSessionDuration, which allows an earlier detection of an
early pass verdict. If this value is not known, the special value ∞ is given as
parameter value.

• For the time instant when the test session is started, and for each subsequent
time instant when at least one observation function changes its current value,
the interface function iNotify() must be called. Its arguments, beside the
transparently preserved state object, are (1) a time stamp value identifying
the current time instant and (2) the collection of the newly taken values of all
observation functions, indexed by the corresponding atomic predicate.
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Chapter 4. Informal Description of the Kernel Algorithm

Table 4.1 Syntax of the Kernel Algorithm’s Input and Internal Language S ′

S ′ = s or

s and = ANDk { s or+ }
s or = OR { s alt+ }
s alt = s seq | REPst (s seq | s and) | s base
s seq = s step (; s step)+

s step = s opt | s base
s opt = OPT (s base | s seq)
s base = s and

| i ,apk where i ≤ a
| 44 | 4L s seq

This interface function returns an early verdict value, which is one of the
values {pass, fail, inconc}, indicating the fulfillment relation between the
specification term and the prefix of the SUT’s trace, as far as it is currently
known, and all its possible continuations (cf. the description of verdict values
above in section 3.2 on page 9).
As soon as a conclusive verdict is returned, the algorithm’s behaviour is not
longer defined.

• If a session has ended and no conclusive early verdict has been returned, a
final verdict is calculated by calling the interface function iFinalize(). The
final verdict is always conclusive.
Note that for the time instant representing the end of the test session the
interface function iNofify() may not be called. This is because the algorithm
makes extrapolations concerning the subsequent future time interval, which
would not be correct in this case, cf. section 4.7.7 below.

4.2 Normalization of Specification Terms

The specification expression SpecUT passed to the interface function iInit() must be
given in a normalized form, which must be a sentence of the language S ′ as defined
in table 4.1. It must be a sentence of a subset of L S ′, because it must not contain
one of the terminal symbols 44 and 4LS ′, which are reserved for the internal use
of the algorithm.

While the possibility of arbitrary combination (“freeness”) of constructors in
the front-end language S is an important issue for the author of the specification, the
language S ′ restricts these combinations. This allows a straight-forward definition
of the real-time algorithm, and thus increases its efficiency and readability. The
different structure of expressions in both languages is depicted in figure 4.1.

The semantics of all those constructs in S ′ which are known in S are carried
without any changes from the semantics defined for S in table 3.2.

16 markuslepper.eu

 

http://markuslepper.eu
http://www.worldcat.org/search?q=


4.2. Normalization of Specification Terms

Figure 4.1 The Grammars of S and S ′ Represented Graphically
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MIN
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The semantics of the new constructs in S ′ are defined as . . .

[[REPst s]]L = [[REP s]]L ∪ {{}}
[[i ,apk ]]

L = [[MIN i MAX a pk ]]
L

The suffix st has been chosen as a mnemonic for the “star” operator.

It is always possible to define a transformation from L S to L S ′, which is total
and semantic preserving. In a practical implementation such a transformation could
and should include further simplifications and optimizations, as it is the case with
the ATCH tool. An exhaustive and formalized discussion of these transformations
is neither challenging nor in the scope of this work.

In any case transformations are required concerning . . .

• the re-writing of expressions using OPT, REP and ; , possibly in combination
with duration requirements,

• the extraction of duration requirements,
• and the canonicalization of conjunctions and disjunctions,

A first group of transformations simplifies the use of OPT and REP expressions:
The REP/REPst constructors only make sense when applied (directly or via an AND

expression) to chop expressions. Just contrarily, each OPT expression must be an
argument to a chop expression. In all other cases the expression is re-written ac-
cording to the defined semantics, possibly eliminating these operators and modifying
duration requirements.

Furthermore, each expression of type ANY is replaced by the reserved atomic
predicate p0, which can be seen as representing an observation function which always
takes the value true. This allows the algorithm to treat all atomic expressions in a
uniform way.
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Chapter 4. Informal Description of the Kernel Algorithm

In this section the term atomic expression refers to all expressions in S which are
either atomic predicates pk in S or S ′, or of the form ANY in S , and the term complex
expression refers to all expressions in S which are constructed by the application of
AND, OR, REP or ; .

Then the main transformation replaces duration requirements on complex ex-
pressions by a conjunction of this expression (or possibly of some sub-expression, in
case of an AND-expression) with a duration requirement on an atomic expression.

For instance, . . .

MIN d (p8 ; p9 ; . . .) is replaced by AND { (MIN d ANY), (p8 ; p9 ; . . .) }
MAX d REP (p8 ; p9 ; . . .) is replaced by AND { (MAX d ANY), REP(p8 ; p9 ; . . .) ) }
MIN d AND {(p7), (p8 ; p9 ; . . .) } is replaced by AND { (MIN d p7), (p8 ; p9 ; . . .) }
MIN d OR {α1, α2, . . . } is replaced by AND { MIN d ANY, OR {α1, α2, . . .} }

Since after this transformation step only atomic expressions are subject to du-
ration requirements, the constructors MIN and MAX are eliminated from the language:
each expression MIN i MAX a pk is rewritten to i ,apk . In case that there is no mini-
mal(/maximal) duration requirement imposed on pk , the value of i(/a) is set to
0.0 (/∞). Additionally the transformation ensures that i ≤ a, which is of central
importance for the efficiency of the algorithm, cf. formula (6.26).

A next group of rewriting steps assures that (1) the top level expression is an
OR term, that (2) each AND term only contains OR expressions, and that (3) all OR
terms except for the top level one are immediately contained in an AND term.

The purpose of this group of transformations is the following:

During its operation, the algorithm continuously calculates all possible map-
pings between the SUT’s trace and the SpecUT (=“partial interpretations”, as de-
fined in section 4.7 below). A specification like α ; , pk can correspond to multiple
different ones of these mappings, if the observation function oscillates between true

and false, while α is continuously fulfilled by the trace data, — as it is schematically
depicted in figure 4.2 on page 26.

For the sake of simplicity of the algorithm’s definition, this kind of non-
determinism shall be handled by the same means as the explicit non-determinism
caused by OR expressions contained in the original specification. This is achieved
by wrapping the top level specification expression and all those arguments of AND
expressions which are not yet OR expressions into a unary OR expression, and all OR
expressions which are not argument of an AND expression into a unary AND expression.

Because both these constructors occur in L S ′ only in this combination, the AND
expressions will be referred to by the wording “AND/OR expression ” in the following
text.

4.3 Node Objects and Evaluation Steps

The central component of the above-mentioned state the kernel algorithm works on,
is a collection of node objects (or simply nodes in the following).

18 markuslepper.eu

 

http://markuslepper.eu
http://www.worldcat.org/search?q=


4.3. Node Objects and Evaluation Steps

In the definitions of the kernel algorithm in chapter 5 this collection is modeled
the attribute GState.nodes.

It is the basic idea of the algorithm, that in each time instant of the session
interval the current state of this node collection reflects the fact whether the SUT’s
behaviour up to this instant permits or even implies the complete trace to fulfill the
SpecUT.

Node objects carry two kinds of attributes: local attributes of different scalar
domains (time instants, durations, and atomic predicates represented as integer
numbers) and attributes which refer to other node objects (see section 5.3).

During the execution of the algorithm operation, new nodes are created and
added to this collection, attribute values of existing nodes are altered, and nodes
are removed from the collection.

The state of this collection of nodes is changed in reaction to (1) the change
of the current value of observation functions, as made known to the algorithm by
calls to the iNotify() interface function, and (2) to the expiration of timer requests,
which are maintained internally and set up according to the duration requirements
contained in the specification term.

The algorithm consists of a collection of function definitions, each of which
belongs to one of three groups:

• The interface functions (as described above in section 4.1 and defined in sec-
tion 5.4) and the top level scheduling functions (see section 5.5),

• functions defining the transformations applied to the node collection in each
evaluation step (sections 5.7 to 5.9),

• functions which analyze the current state of the node collection to derive a
verdict value (see formulæ (5.11) and (5.12)).

Central part of the algorithm is the definition of an evaluation step. Only when
an evaluation step is executed the state of the node collection possibly changes.

The scheduling functions directly implement the interface functions described
at the beginning of this chapter (see section 4.1 above). When executed, they initiate
the execution of one or more evaluation steps in an appropriate order, and finally
call an analyzing function for calculating a verdict from the resulting state of the
node collection and returning this to the caller.

The execution of an evaluation step is always related to a certain time in-
stant, and all evaluation steps have to be executed in non-decreasing order of the
corresponding time instants.

An evaluation step must be executed for each time instant at which (1) the
value of at least one observation function changes, or (2) at least one timer request
expires, or (3) several of these kinds of events happen simultaneously. These time
instants are called critical in the following.

If at a critical time instant the values of more than one observation function
change, this fact has to be signaled by the adaptive layer to the algorithm completely
in one single call to iNotify(), attributed with all these new values.
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Chapter 4. Informal Description of the Kernel Algorithm

Multiple calls to iNotify() for the same time instant are permitted, but the
argument containing the current values of the observation functions must be identical
for all these calls.

The first execution of an evaluation step at a critical time instant definitely
changes the state of the node collection. Subsequent executions for the same time
instant will not have any further effect. Executions of an evaluation step for a time
instant which is not critical do not have any effect on the state of the node collection
either.

4.4 Internal and External Scheduling of Timer

Requests

As mentioned above, the expirations of timer requests are handled internally to the
algorithm. Since they always cause an evaluation step, they possibly result in a
conclusive verdict value.

The kernel algorithm offers to the adaptive layer two ways of dealing with timer
requests:

iNotify() additionally returns the time stamp of the timer request which is the
earliest to expire. In case that this time instant is reached before the change of an
observation function has caused an evaluation step anyway, the adaptive layer may
call iNotify(), — of course with the currently valid set of observation values, which
is unchanged w.r.t. that of the preceding call — and thus trigger the execution of
an evaluation step for inquiring the possibly conclusive verdict caused by the timer
expiration.

But this behaviour of the adaptive layer is not necessary for the correct op-
eration of the algorithm1. This is because the scheduling function implementing
iNotify() always considers whether there have been critical time instants between
the time instants of its last and of its current execution, i.e. time instants which are
critical only due to timer expirations and not due to changes of observation func-
tions. For all these time instants one evaluation step each is executed in the correct
sequential order, before finally the evaluation step for the current time instant is
executed.

The same rules of executing evaluation steps apply when iFinalize() is called
for the time instant corresponding to the end of the test session for all critical time
instants later than the time instant of the last call of iNotify .

Note that this external triggering of evaluation steps has in no concern any
influence on the semantics, e.g. w.r.t. the accuracy of duration measurement. The
internal scheduling of the algorithm is always executed independently. The only
effect of the external scheduling is that the caller of the interface functions might
get a conclusive verdict earlier. Due to the idem-potence of the evaluation step the
adaptive layer might even call iNotify() in arbitrary random intervals, as long as the
rules listed above in sections 4.1 and 4.4 are respected.

1Indeed, in certain technological contexts this behaviour would not be adequate.
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4.5. Internal Structure of an Evaluation Step

Table 4.2 Syntax of Linear Specifications S ′′

S ′′ = s seq

s seq = s base (; s base)∗

s base = i ,apk | s and
s and = ANDk { s seq+ }

4.5 Internal Structure of an Evaluation Step

Each evaluation step consists of two different, strictly separated phases:

In the first phase, called positive phase, new nodes are created and added to
the collection.

In a second phase, called negative phase, existing nodes are removed from the
collection.

Additionally, in both phases the state of already existing nodes can be subject
to some minor and local alterations.

The timer requests caused by a MIN expression in the specification are called
time-in requests, those caused by a MAX expression are called time-out requests.

In the positive phase all reactions to the expiration of time-in requests and to
the becoming-true of observation functions are performed. Each single event of both
kinds can lead to the creation of none, one or finitely many node objects.

In the negative phase all reactions to the becoming-false of the observation
functions are performed, followed by all reactions on the expiration of a time-out
request.

Each single event of both kinds can lead to the removal of arbitrary many of
the currently existing node objects, which are always of finite number.

4.6 Linear Specifications and Interpretations

The notion expanded specification denotates the expression which is derived from
SpecUT by replacing all REPst expressions and all chop expressions containing OPT

expressions by the corresponding OR construct (see section 3.2 on page 10 above,
and the description of the implementation in section 4.7.5 on page 27 below).

Due to the definition of the REPst constructor, the resulting term may include
OR expressions which are not finite.2

The notion linear specification denotates a specification which is derived from
the expanded specification by replacing each OR construct by one of its alternatives.
A linear specification is always a finite term.

2Therefore, strictly spoken, an expanded specification is possibly not an expression from the
front-end specification language as defined in the previous chapter, and which includes only finite
terms.
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The language of linear specifications which results from these transformation
can be described by the syntax S ′′ given in table 4.2. Obviously, the chop operator ;
is not longer required in L S ′′, and s seq could have been defined simply as s base+.
This means that a linear specification is just a sequence in the mathematical sense
of elements from L s base. This is the view which will be taken in the rest of this
text.3 Such a sequence is called chop sequence, and its elements are referred to as
its (specification) particles.

Every specification is semantically equivalent to the disjunction of all the dif-
ferent linear specifications which are derivable from it.

The algorithm works by monitoring the SUT’s trace data w.r.t. all linear spec-
ifications derivable from SpecUT.

Let s be a linear specification of k particles. An interpretation i of given trace
D w.r.t. s is a sequence of k + 1 time instants 〈t1, . . . , tk+1〉, for which it holds that
t1 = glb dom D and tk+1 = lub dom D , and that i cuts the trace D into k non-empty
sub-traces 〈g1, . . . , gk〉, such that every nth sub-trace fulfills the nth particle of s.
In the context of an interpretation, each such sub-trace is called a segment . The
nth segment and the nth sub-expressions are mutually called corresponding to. In
the same context, the time instant value tm is called the start time of the segment
gm , and tm+1 its end time.

Let for the rest of this text vk be the observation function indicated by the
atomic predicate k , i.e. the observation function corresponding to all specification
expressions , pk .

If the nth particle is of form i ,apk , the existence of the interpretation is equiv-
alent to the fact that during the whole nth segment vk is continuously true, and
that the length of this segment is larger or equal to i and less or equal to a.

If the nth particle is of form AND {α1, . . . , αm} the existence of the interpreta-
tion means recursively that there exist different interpretations of the corresponding
segment, at least one w.r.t. each α ∈ {α1, . . . , αm}.

The collection of interpretations of a given trace w.r.t. one certain linear speci-
fication is in most cases of infinite cardinality : If 〈t0, t1, t2〉 is an interpretation of D
w.r.t. the outmost simple specification p1 ; p2, and if v1 and v2 are simultaneously
true (“overlap”) during a non-zero interval around t1, then each time instant from
this interval can be substituted for t1, yielding infinitely many interpretations.

The existence of at least one interpretation of a given trace D w.r.t. a lin-
ear specification e is equivalent to the fact that D fulfills e, in the sense of the
denotational semantics presented in section 3.2.

Therefore, a given trace fulfills a given specification, iff there exists at least one
interpretation of this trace w.r.t. at least one of the linear specifications derivable
from this specification.

3For sake of readability, instances of chop sequences may nevertheless be notated using the “;”
symbol as delimiter.
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4.7 Operation of the Kernel Algorithm

4.7.1 Notational Conventions

The text in this section explains the operation of the kernel algorithm and the design
decisions taken therein caused by semantical considerations.

Since it frequently refers to the formulæ of the next chapter, which constitute
the algorithm by mathematical means, interjections like “(cf. formula (5.47))” would
frequently occur in the text.

For sake of a more fluent readability, these interjections are in most cases
replaced by the short-cut notation “(5.47)”. In an electronic version of this text these
references would be replaced by hyper-links.

A juxtaposition of these references means a sequence of function calls, so
(5.18)(5.19)(5.21) reads as “cf. function (5.18), which calls (5.19), which in turn calls
(5.21)”.

If no call chain but a mere enumeration is meant, the notation is (5.8)+(5.39).

The same shortcut notation is used in chapter 6.

4.7.2 Partial Interpretations and the Semantics of Node Ob-
jects

During the execution of the algorithm, a partial interpretation is an interpretation
of a prefix of the SUT’s trace data w.r.t. a certain prefix of a linear specification
derivable from SpecUT.

The operation principle of the algorithm is to model all partial interpretations
by node objects.

Each node object belongs to one of three classes, called Prime nodes, ATst

nodes and ASol nodes , — see formula (5.6) and the graphical notation in figure 5.1.
Prime nodes and ASol nodes are commonly referred to as LNodes, and they repre-
sent partial interpretations which end with a segment corresponding to an atomic
predicate or to a conjunctive expression, resp. ATst nodes represent conjunctive
expressions for which further interpretations are still possible.

At each time instant t a node object is in a certain state. The definitions of
the possible states are specific to the different node classes. The state of a certain
node may alter during the execution of an evaluation step.

Some of the states defined for LNodes are special and called valid states. An
LNode which is in such a valid state at a time instant t is simply called a (currently)
valid node.4

4 In a strict sense, this wording can only be used if t does not correspond to an evaluation step
which alters the node’s state. In this case, all function calls in the positive and negative phase
would have to be considered in detail, which is much more complicated. Fortunately, this does not
affect the following discussions: since the semantics of specifications are defined by glb and lub, we
can always substitute t by a corresponding limes expression.
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Each LNode corresponds to one certain specification particle, i.e. the sub-
expression at a certain sequential position of one certain linear specification5, and
to another LNode as its predecessor .

Each LNode n which is in a valid state at a time instant tnow represents a (possi-
bly infinite) set of segments, which (1) are the last segment in a partial interpretation
which ends at tnow , and (2) which fulfill the specification particle corresponding to
n.

If n corresponds to the very first particle of a linear specification, each such
segments constitutes a partial interpretation on its own.

If not, each such segment constitutes one or more partial interpretations by
appending it to one or more partial interpretations represented by the predecessor
of n.

If the specification particle corresponding to n is of form i ,apk , the node is a
Prime node. If the specification particle corresponding to n is of form AND{}, the
node is an ASol node (read: “solution of an and expression”).

Infinite sets of segments can be represented by a single LNode object because
of the following reasons:

At each current time instants of it execution, the algorithm relies only on those
partial interpretations which end exactly at this very time instant. The same holds
for all theoretical discussions related to some arbitrary time instant of the past
execution. In this context, the segments of a partial interpretation are uniquely
identified by its start time :

The end time of the last segment of each partial interpretation is always iden-
tical to the current time instant tnow . The end time of a non-last segment in each
valid interpretation is identical to the start time of its successor segment.

Therefore only the sets of possible start times have to be implemented to rep-
resent a set of segments.

The start times of all segments represented by a valid Prime node are deter-
mined by applying linear algebraic operations(6.7) on the latest time instant when
the corresponding observation function changed to true, and (possibly) the time
when it changed back to false.

Therefore the set of all start times of all segments represented by Prime nodes
is a cohesive interval, which can be uniquely identified by its lub and glb.

The same holds by induction for segments represented by any LNode, because
the set of the possible start times of segments represented by an ASol node is
calculated as an intersection of these intervals.

Since a new Prime node is only created when its predecessor node enters its
valid state (or possibly once for each negative edge of its observation function, which
can happen only finitely often) the collection of currently existing Prime nodes is
always finite.

5This relation from LNodes to specification particles is a non-injective function, because different
node may refer to the same position in the same linear specification, if they represent different
partial interpretations by referring to different predecessors, see the following paragraphs and the
last two node objects in figure 4.2.
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4.7.3 Termination of Node Objects

The same holds by induction for all LNodes, because for each combination of
valid nodes corresponding to specification particles from a lower syntactical level of
nesting, only one ASol is created.

4.7.3 Termination of Node Objects

Whenever the algorithm detects in an evaluation step at time instant tnow , that none
of the partial interpretations represented by a currently valid node n can extend
beyond tnow this node transits from the valid into the terminated state. For the sake
of shortness, this will be simply called the termination of the node n.

This event can be caused by the expiration of a time-out request, or by an
observation function changing to false, and is executed in the negative phase of
the evaluation step. (5.16)(5.19)(5.46)(5.47)

This event must be signaled to all successor nodes of n (and to all ASol nodes
using n as part of their solution, see section 4.7.8 below). Receiving this signal will
possibly affect the internal states of a successor nodes. (5.51)(5.49)(5.50)(5.53)

In section 5.9 the termination of n is modeled by excluding the corresponding
schema from the set N = GState.nodes, after this signaling has taken place.6 This

is highlighted by the visual mark-up \{n} .

Because the functions in the algorithm address nodes only by filters on these
sets, e.g. in (5.23) and (5.48), or by the attribute .predec if it is known that this
predecessor is a valid node and therefore exists in GState.nodes, this modeling is
consistent.

In the implementation, objects representing terminated nodes are physically
deleted by “mfree()”. This is possible because all parts of their information contents
which are required by their successor nodes are cached by dedicated attributes of
the latter. This feature is a central achievement of the algorithm and is discussed
in detail in section 6.7.

Contrarily, on the level of theoretical discussion in this chapter and in chapter 6,
the information contents of “formerly existing” objects is of course accessible.

4.7.4 The Special Node n−1 and the Predecessor Relation

Seen as a Tree

The predecessor function is realized in the algorithm by the node attribute n.predec.

For all nodes which represent the very first specification particle in the top level
linear specification, the algorithm provides the special Prime node n−1 to be used
as predecessor.

Consequently, the predecessor relation forms a tree data structure with n−1 as
its root. Figure 4.2 shows the top of such a tree, corresponding to the start of a test
session.

6The name of the schema definition GState is used here and in the following as a name of
its only instance, which in the algorithm in chapter 5 exists only as the parameter called “g” in
numerous function definitions.
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Chapter 4. Informal Description of the Kernel Algorithm

Figure 4.2 Example of Prime Nodes and Their Predecessor Relation

SpecUT = “ p ; MIN 5 q ; MAX 23 r ; . . . ”

p

q

r

0.0 = tstartSession

10.0 20.0 30.0 40.0 50.0 60.0

n−1

p

p ; q

p ; q ; r

.predec

testing state time-in state valid state valid+fixed state
time-out pending

terminated

The node n−1 is treated specially by the algorithm (5.8)(5.15): As if it corre-
sponded to an observation function with the meaning “test session has not yet
started”, it is in a valid state between the calls to iInit()(5.8) and the first call to
iNotify()(5.9).

Since n−1 leaves its valid state in the negative phase of the very first evaluation
step, each LNode which ever reaches a valid state must have as its transitive prede-
cessor an LNode which had entered its valid state at the start of the test session.

Therefore each valid node represents a partial interpretation which covers the
total test session up to now, starting with its beginning. This property is the central
goal for the design of the ATCH algorithm.
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4.7.5 Creation of Node Objects for Subsequent Expressions

As explained above, whenever a node n enters a valid state in the positive phase of
an evaluation step at time instant tnow , this means that there exist partial interpre-
tations of the SUT’s trace which extend up to tnow .

In the same evaluation step the algorithm must start its monitoring activity,
whether partial interpretations (of the SUT’s trace up to future time instants) exist,
which extend the partial interpretations represented by n by further segments.

The expanded specification expression and the complete set of all linear expres-
sions derivable from SpecUT cannot be realized explicitly in the implementation,
due to its possibly infinite cardinality.

Instead, every node n represents by the (inverted) sequence of its predecessor
nodes the prefix of a linear specification which is already recognized as being fulfilled
by the prefix of the SUT’s trace.

Additionally, its attribute n.expr holds the suffix of that sub-expression of the
original SpecUT, this linear specification has been derived from. So n.epxr is an
un-expanded expression ∈ L S ′.

n.epxr will be expanded on demand, as soon as n goes valid, calculating for
this node the set of subsequent expressions. This expansion goes one step towards
a linear specification by making explicit all choices immediately following the chop
operator to the right of the node’s own specification particle.

The expanding rules are

{(OPTα ; β)} ; {(α ;β), (β)}
{(REPstα ;β)} ; {(α ; REPstα ;β), (β)}

(4.2)

. . . and the expansion process is the application of these rules until a fix-point
is reached.

Since this expansion process is determined only by the structure of the original
specification expression, which is finite, it always terminates.

Let head of a chop expression be the left argument of the left-most chop op-
erator contained therein.7 Then all elements in the set of subsequent expressions
are un-expanded expressions from L S ′, the head of which is always ∈ L s base, i.e.
either of form , p or of form AND{. . .}.

Therefore, in the same evaluation step in which a node becomes valid(5.31) , the
set of its subsequent expressions is calculated, and for each element e of this set a
new node ne is created. (5.32)(5.33)(5.35) The value of ne.expr is set to e, and the value
of ne .predec is set to n, and the head of n.epxr is the specification particle the new
node must monitor.

4.7.6 States and Behaviour of Prime Nodes

In the case that the head of a subsequent expression e is of form i ,apk , a new Prime

node n is created(5.33). The further processing of Prime nodes is straight-forward,

7In the algebraic model in chapter 5 all specification expressions chop expressions, because of
the additional appending of the 44 symbol, cf. section 4.7.8 below.
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Chapter 4. Informal Description of the Kernel Algorithm

Figure 4.3 States of a Prime node
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4.7.6 States and Behaviour of Prime Nodes

and depicted informally by the state machine from figure 4.3.

If the n.predec terminates earlier than that the corresponding observation func-
tion vk has become true, n.predec does not represent any partial interpretation
which extends beyond than tnow . Since segments corresponding to n may not yet
begin due to vk still being false, n will never represent any partial interpretation
at all. So it is simply deleted. (5.49)

Let tt either be the time instant of n’s creation in case that vk is already true

in this moment, or otherwise the subsequent time instant at which vk changes to
true while n.predec is still in a valid state.

At tt the Prime node enters the time-in state, and the current time instant is
recorded in the node’s attribute .eFirst (read “first entry time”)(5.20). Since cur-
rently its predecessor is still valid, there exist partial interpretations represented
by n.predec w.r.t. some linear specification eP which extend up to tnow . In infitely
many future time instants tt + ε the SUT’s trace therefore will surely have fulfilled
eP ; 0.0,∞pk , i.e. a linear specification which ignores the duration requirements of n’s
specification particle. This follows from the finite variability requirement imposed
on the the input data (cf. section 2.1 on page 4 and discussed in more detail in
section 4.7.7 below).

The value of .eFirst indicates the earliest possible time instant at which all
those segments corresponding to n’s specification particle may begin, which are able
to extend one of the partial interpretations represented by n.predec.

After the expiration of the minimal duration requirement (5.18)(5.19)(5.21) the
node changes to the valid state. It now represents a partial interpretation, because
there is at least one segment during which vk is constantly true , which is long
enough to fulfill the minimal duration requirement i , and which extends a partial
interpretation represented by n.predec.

If, otherwise, the observation function changes to false again, earlier than the
time-in expiration, the node is discarded, because the duration of being-true of the
observation function was not long enough to form a valid segment. (5.19)(5.46)(5.47)

Iff, in this case, the predecessor node is still true, the node is re-established in
the testing state, waiting for a new segment candidate to begin.(5.46)

When the predecessor of a time-in or valid Prime node leaves its valid state in
the negative phase of an evaluation step, the time instant of this event is recorded
in the field .eLast . (5.47)(5.49) This time instant value is the last time instant at
which the segment corresponding to n may begin, because all partial interpretations
represented by its predecessor node cannot extend beyond this time instant.

Additionally, if there is a maximum duration requirement a < ∞ imposed on
the specification particle of n, in the same evaluation step a time-out request for the
time instant n.eLast+a is initiated(5.49): As soon as this expires, the node terminates
(5.19)(5.47), because all segments lasting longer than this current time instant would
have a longer duration than permitted, since they must have begun not later than
n.eLast .

When the observation function of a valid node changes to false, then this
node transits to the terminated state. (5.19)(5.47).
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Chapter 4. Informal Description of the Kernel Algorithm

If its predecessor is still valid, a new node for the same subsequent specification
is created, waiting for a new candidate segment to begin. (5.47)

4.7.7 The Kernel Algorithm Needs to Look into the Future !

Whenever a node is created for a specification particle i ,apk , and the vk is currently
true and does not change to false in the same evaluation step, or it changes to true

in the same evaluation step, the node is put into the time-in state immediately. (5.20)

If there is no minimal duration requirement imposed on the specification particle
(i.e. i = 0.0), then the node transits the time-in state and enters a valid state
immediately. (5.21).

In this case, the described process of expanding the set of subsequent expres-
sions and creating the corresponding nodes will be continued recursively in the very
same evaluation step, (5.33)(5.34) — until an observation function is referred to wich
stays false (or which just in this evaluation step changes to false), or a specifica-
tion particle with a non-zero minimal duration requirement is reached.

This behaviour of the implementation is correct because of two facts:

(1) All observation functions which already are (or currently become) truecan
change to false only in some future evaluation step. This step cannot happen
earlier than after a non-zero time interval, due to the finite variability of the input
data (cf. section 2.1 on page 4).

(2) The number of nodes created in the same evaluation step as (transitive)
successors of one certain valid node, is always finite: It is limited by the expression
SpecUT, which is always a finite term, and all expressions of type REPstα (which are
the only potential sources of infinite linear specifications) are explicitly prevented
from being used for node creation more than once in the same evaluation step and
as a consequence of the same node becoming valid. (“live lock prevention”, cf.
formula (5.33))

Therefore the SUT’s trace in that future interval of real-time described in (1)
can always be split up into as many segments as nodes have been created.

This even holds if the last of these future nodes corresponds to a specification
particle with a duration requirement > 0.0, because this requirement is defined by
a limes expression, and the interval needed for distributing it to the other future
nodes can be made arbitrarily small.

This “looking into the future” is a central contribution to the simplicity of the
algorithm, and is also applied to valid ASol nodes accordingly.

4.7.8 States and Behaviour of ATst and ASol Nodes

The central idea to recognize all segments which fulfill a conjunctive expression is
to provisionally abstract from the conjunction and to simply replace it by another
disjunction :

Whenever a node nP becomes valid, and an AND/OR expression ea =
AND { OR {α1,1, . . . , α1,k1

}, . . . , OR {αn,1, . . . , αn,kn
} } is head of an expression e from
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4.7.8 States and Behaviour of ATst and ASol Nodes

the set of subsequent expressions, all chop sequences α1,1, . . . αn,kn
are treated as if

they were subsequent expressions of nP on their own right, — as if they were suffices
of the top level chop sequence, which specify a complete test session up to its end.
(5.38)(5.39)(5.33)

That means that they are partially expanded and a new node is created for each
of the expansion results, as described in the previous sections and (recursively) in
this section. These nodes are called the leading nodes of themselves and of all their
successor nodes.8 For each node n, the path in the predecessor tree which starts
with the leading node of n and ends with n is called its containing node chain.

Consequently it holds for each node, that its leading node is assigned to the
specification particle which is the first in the same chop sequence of the nearest
containing AND/OR construct as its own specification particle.

For each partial interpretation represented by some node, the provisional in-
terpretation is the suffix which starts with the segment represented by the node’s
leading node.

Not before provisional interpretations have been detected w.r.t. a certain lin-
earization of one complete αx ,y from each OR expression, the algorithm re-considers
the AND/OR expression: All provisional interpretations which start at the same time
instant are replaced by one single segment, for extending the partial interpretation
of the chop sequence of the next-higher syntactical level.

For this sake, the information which node is a leading node and to which AND/OR

expression it belongs, is contained in all nodes independently from the node’s at-
tributes as discussed so far: For each AND/OR construct ea which is head of an
expression e in the set of subsequent specifications of nP , a new ATst node a is
created, using nP as its predecessor. (5.33)(5.35) For each OR expression o1 . . . on con-
tained in ea , a new OrGr object is created, the attribute tstPartOf of which refers
to a.(5.39)

In all leading nodes created for an αm, the attribute .livesIn refers to om , i.e.
the OrGr object representing the OR expression of which α is an argument. (5.39)(5.33)

In all other cases, i.e. when creating Prime nodes as described in the preceding
section, or when creating the ATst node as described above, the attribute .livesIn
is simply copied from the predecessor node to all of its successor nodes. (5.32)(5.33)

So the leading node of each node is always the first node found when following the
predecessor relation which is contained in a different OrGr than its predecessor.9

Consequently, the value of .livesIn of every node always refers to an OrGr

representing the disjunctive expression which contains in one of its alternatives the
node’s specification particle. For sake of shortness we will say that each Node n is
contained in n.livesIn, and each OrGr o is contained in o.tstPartOf .

8. . . up to and excluding those successors which are again leading nodes because of a nested
AND/OR expression contained in an α.

9This relation is only used in the discussion and proofs of the algorithm, cf. the final remark in
section 4.7.3. In the implementation, the attributes .seFirst and .seLast of each node n, see below,
contain all required information concerning the leading node of n and of all nodes between this
and n. Indeed, it is a central achievement of the algorithm that an access to “older” nodes having
left their valid state is not needed to calculate the correct verdicts, as it is proven in section 6.7.

31 markuslepper.eu

 

http://markuslepper.eu
http://www.worldcat.org/search?q=
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This includes (naturally) those nodes which correspond to the last specification
particle of a chop sequence, which is relevant for calculating the set of segments
fulfilling the conjunction.

For the sake of uniform treatment, a special OrGr object is supplied by the
algorithm(5.8), which is in the text referred to by GState.top. The attribute .livesIn
of all nodes which represent a specification particle from the top level chop se-
quence refers to GState.top. GState.top is also used for calculating verdicts, see
section 4.7.11 below.

The recognition of solutions for AND/OR expressions is realized in the algebraic
model contained in chapter 5 by a notational transformation: all sub-expressions
α of an AND/OR expression are extended by chop-wise appending the special ter-
minal symbol 44, i.e. they are transformed into α ;44. (5.8)+(5.39) The same
transformation applies to the top level expression SpecUT.

Now the algorithm for calculating the set of subsequent expressions of a given
node, as defined above, can be re-used: An LNode n has reached the end of a linear
expansion of an argument of AND/OR, iff 44 is contained in its set of subsequent
expressions. This fact is reflected by the Boolean attribute endReached set to true
in the node object. (5.33)(5.40) Such a node is called final node.

To extend a partial interpretation represented by the common predecessor nP

(which is a partial interpretation on the next-higher level of the syntactical nesting
of AND/OR constructs) by a new segment, there must exist an interpretation for this
segment’s data w.r.t. a linearization of one sub-expression from each OR expression,
cf. the definition of interpretation in section 4.6.

Each LNode object n contains two additional attributes called .seFirst and
.seLast (read “sequence entry first” and “sequence entry last”). These attributes
are used to calculate the earliest and the latest time instant, at which all those
segments corresponding to the leading node of n can begin, which are also members
of a partial interpretations represented by n.

These values are not just identical with the corresponding values in the partial
interpretations represented by the leading node itself. Instead, the correct mainte-
nance of .seFirst and, especially, .seLast is the crucial point in the design of the
algorithm, cf. the following section.

Now the algorithm can work as follows:

In each evaluation step at tnow in which the attribute .endReached of a node
n is changed to true, all combinations of this node with one final node from each
other OrGr of the same ATst node are considered. (5.40) (5.41) (5.43)+(5.42)

For each such combination of nodes, the set of possible start points of those
sub-traces is calculated, which extend up to tnow and for which each node provides
at least one provisional interpretation.(5.42) This calculation is based on the values
.seFirst and .seLast of all combined nodes, and its (possibly infinite) result can be
represented by one cohesive interval which consists of all possible start times of these
sub-traces, cf. the following section.

As mentioned above, nP is the common predecessor of all leading nodes and of
the ATst node.
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If the calculated set of sub-traces is non-empty, each sub-trace can be appended
to one or more partial interpretations represented by nP , yielding a new and longer
partial interpretation w.r.t. the chop sequence of the next-higher syntactical level.

Since this set of segments is uniquely determined by the cohesive interval con-
sisting of the respective start times (similar as it is with Prime nodes), only one
single node must be created for its representation.

This node is an ASol node. It is put either immediately in a valid state, or it
is put into the time-in state, as described in the next section, and enters the valid
state when the time-in request expires.

The value of its attribute .solParts (read “parts of the solution”) identifies the
set of final nodes which have led to its creation. The values for .predec, .livesIn and
.expr are simply copied from the corresponding ATst node.

Therefore, as soon as the ASol node becomes valid, the process of calculating
the set of subsequent expressions and creating the corresponding nodes is executed
in the same way as with a Prime node (5.42)(5.31)+(5.19)(5.21)(5.31), as described in the
preceding sections, thereby continuing the process of monitoring linear expansions
of the specification expression on the next-higher level of syntactical nesting.

An ASol node terminates as soon as at least one of the nodes from .solParts
terminates (5.47), or when a time-out request expires, cf. the next section.

4.7.9 Calculating Duration and Timing Requirements for

Segments Representing Solutions of Conjunctions

.

4.7.9.1 Earliest Start Time

As mentioned above, the fundamental semantics of each node currently in a valid
state is the fact that there exist partial interpretations of the SUT’s trace up to now,
w.r.t. some prefix of a linear specification derived from SpecUT.

The node does not provide any information about the structure of these partial
interpretations: This is neither necessary for the derivation of verdicts, nor technical

easily feasible because the complete information is of a cardinality beyond CC.

But some information on this structure is needed, namely the set of start times
of the provisional suffices, because this set has to be intersected with those of other
final nodes for calculating the solutions of conjunctions, as described above.

This set is not identical to the set of possible start times of the segments
represented by the leading node. Consider a specification like . . .

p1 ; AND { OR{MAX d2 p2 ;p3}, . . . }

Assume that v1 and v2 stay always true.

At the time instant 100.0 also v3 changes to true, and the node n3 leaves the
testing state and enters the valid state.
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This indicates that there exist (infinitely many) valid interpretations of the
whole trace D[tstartSession ...100.0+ε] w.r.t. the specification p1 ; MAX d2 p2 ; p3.

In spite of v2 having been valid for a much longer duration, the provisional
interpretations which can contribute to a segment fulfilling the conjunction may not
begin earlier than 100.0 − d2. Since the becoming-valid of v3 happens not earlier
than 100.0, the maximal duration requirement imposed on p2 would otherwise be
violated.

This constraint, the earliest start time of the provisional interpretations rep-
resented by n3 is implemented by the attribute n3.seFirst . This value, in spite of
being related to v2, cannot be realized as an attribute of the node object n2, because
different values may apply to different and simultaneously valid successors of n2, cf.
figure 4.2.

For each node n, the value of n.seFirst only depends from n.eFirst (which is
the first possible start time of the node’s very own segments) and the sum of all
maximal duration requirements imposed on the predecessor nodes in the same node
chain. Therefore this value needs only to be calculated once, and stays constant
throughout the node’s life-time.

For a Prime node it is calculated when the node enters the time-in state due
to the becoming-true of the corresponding observation function(5.20), which sets the
attribute .eFirst .

The first possible start time of the segments represented by an ASol node is
implemented as its attribute .aeFirst .10 When an ASol node is created(5.42), this
value is set to the latest of the values .seFirst of all the final nodes it combines.
In the course of its creation the same calculation for .seFirst is executed as in the
case of a Prime node. For this purpose the ATst node has cached the corresponding
value of the common predecessor nP , since this may have terminated and be deleted
in the meantime.

4.7.9.2 Time-In and Time-Out Requests

Consider a specification like . . .

p1 ; AND { OR{MAX 7 p2 ;p3}, OR{MIN 50 p4} }

. . . assuming that v1, v2 and v4 stay always true, and at the time instant
100.0 v3 also changes to true. In the evaluation step at 100.0, an ASol node N is
created, because both sub-expressions are now fulfilled.

Partial interpretations w.r.t. p1 ; MAX 7 p2 ; p3 can start anywhere between 0.0
and 100.0, but the provisional interpretations w.r.t. MAX 7 p2 ;p3 cannot start earlier
than 93.0, as explained above.

In spite of the minimal duration requirement on p4 already beeing fulfilled per se
since 50.0, it has to be re-considered when combining the provisional interpretations

10The names .eFirst and .aeFirst has been chosen differently only for documentation purpose,
since the calculation of these attributes differs significantly. Seen “from above”, in the context of
a node chain representing interpretations of a chop sequence, their rôle is identical.
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represented by n3 and n5: Since the segments represented by N cannot begin earlier
than 93.0, the minimal duration requirement on p4 has to be fulfilled relatively
to this time instant, — but only if n4 is considered in the context of the partial
interpretations represented by N .

Therefore each newly created node ASol node N is put in the time-in state, iff
the longest minimal duration requirement imposed on one of the chop sequences it
combines is not yet fulfilled relative to N .aeFirst .(5.42)

The same mechanism applies to the shortest maximal duration requirement
and N .aeLast , possibly generating a time-out request.(5.42)

4.7.9.3 Conflicting Duration Requirements

The transformation from L S to L S ′ guarantees that i ≤ a holds for each specifi-
cation i ,apk appearing in SpecUT, cf. section 4.2.

But a specification like . . .

AND { OR{MIN 10.0 p1, MIN 20.0 p2 }, OR{MAX 15.0 p3, MAX 25.0 p4 } }

. . . is not analyzed during this transformation in its current implementation.

While three of the four possible combinations of sub-expressions are sensible,
the combination of p2 and p3 is never satisfiable.

Therefore the function which combines final nodes(5.42) must check for the ab-
sence of conflicting duration requirements.

4.7.9.4 Latest Start Time

As described so far, all attributes the values of which are derived from the going
true of an observation function, stay constant throughout the life-time of a node
object: Whenever an observation function changes to true, new node objects are
created, their attributes are set accordingly and they are just added to the collection
of nodes. No attribute values of existing node objects need to be altered.

Naturally this is not true when observation functions return to false again:
the corresponding node objects already exist, and thus the state of already existing
objects has to be altered to reflect this event. This happens e.g. with the attribute
.eLast of a valid Prime node, when its predecessor node terminates, cf. section 4.7.6.
This does not cause any difficulties, because it is a purely local update.

The situation is fundamentally different as soon minimal duration requirements
and AND/OR expressions are combined:

Consider the following specification :

p1 ; AND { OR{p2 ; MIN d3 p3 ; p4 ; p5 ; OPT (p6 ; p7)}, β } ; γ

Assume that all v1 . . . v7 stay true for a long duration, and the corresponding
nodes n1 . . . n7 exist in a valid state.
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Chapter 4. Informal Description of the Kernel Algorithm

At some time instant t4, v4 changes to false.

From now on it is clear that the provisional interpretations represented by
the final node n5 may not start later than t4 − d3, because otherwise the minimal
duration constraint imposed on p3 cannot be fulfilled.

This is reflected in the attribute .seLast of n5 (read: “sequence entry last”),
which for each LNode n always holds the time instant for which it is known that
provisional interpretations represented by n may not begin later.

Similar as in the dual case described in section 4.7.9.1 above, (1) for each LNode
the value of .seLast is determined by its value of .eLast and the sum of the minimal
duration requirements of all preceding nodes up to the leading node,(5.47)(5.51)+(5.42)

and (2) the value of .aeLast of each ASol node is defined as the earliest value .seLast
of all combined final nodes.(5.42)

The difference to the dual case is that already successor nodes n6 and n7 have
been created. The fact that the value of n5.seLast has changed must be propagated
to all these successor nodes, because it may alter their own value of .seLast . This is
achieved by the function LNode terminates() (5.47) calling LNode SEL lowers()(5.51)

on itself, and recursively on all successor nodes if necessary.

This propagation can only cause an alteration towards a stronger restriction,
i.e. a lower value of .seLast . In the scenario above, where all observation functions
except v4 are true , n6.eLast and n7.eLast will be set to t4 − d3.

But in the case that v6 has already changed to false at some earlier time
instant t6 < t4, then n7.seLast will already have been altered to t6 − d3, and the
lowering of n5.seLast to t3 − d3 > t6 − d3 will not have any effect on n7.seLast .

Therefore this propagation will be stopped as soon as it reaches a node
on which it has no effect, cf. the definitions of LNode SEL lowers()(5.51) and
ASol subSEL lowers()(5.52).

Furthermore, one or more solutions of β may have been detected. In this case
one or more ASol nodes using n5 as part of the represented solution have already
been created, and γ has been expanded and nodes have been created, using these
ASol nodes as predecessors. Therefore a new, lower value of n5.seLast must be
propagated to all ASol nodes N with n5 ∈ N .solParts, which is achieved by the
function LNode SEL lowers()(5.51) calling ASol subSEL lowers()(5.52) for all these
N .

This possibly alters N .aeLast . Any alteration of N .eaLast always changes
the value of N .seLast , see rule (2) above, so that the propagation process must
continue recursively to all successors of N and to all ASol nodes which use N as
part of their solution. This is achieved by ASol subSEL lowers()(5.52) calling in turn
LNode SEL lowers()(5.51).

Since a possibly pending time-out request of an ASol node N is determined by
the constant value N .maxSubSum measured relatively to N .aeLast , a lowering of
this value must imply a re-adjustment of the timer request.(5.52) The proof that this
re-adjustment is always consistent is the main issue in section 6.3.5.1.

This propagation mechanism constitutes the major part of the activities in the
negative phase of an evaluation step. Its definition and the proof of its correctness
are the central invention in the design of the ATCH algorithm.
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4.7.10 Optimization of the Monitoring of Conjunctive Ex-
pressions

The process of monitoring the fulfillment of a conjunctive expression, as described
in the preceding section, is slightly modified for the sake of performance as follows:

Each sub-trace of the SUT’s trace which fulfills a conjunctive expression cannot
begin earlier than a time instant at which the corresponding combination of those
observation functions takes the value true, which are the leading atomic predicates
in all combined chop sequences.

E.g. the nested specification (given in the front-end notation S ) . . .

AND { (p1 ; . . .),

OR { (p2 ; . . .), (p3 ; . . .), AND { (p4 ; . . .), (p5 ; . . .) } }

}

. . . can never map a sub-trace of the SUT’s trace which does not at its begin
fulfill the observation function . . .

p1 ∧ ( p2 ∨ p3 ∨ (p4 ∧ p5) )

Therefore the rewriting from S to S ′, executed in the pre-processing step of the
adaptive layer and described in section 4.2 above, synthesizes an additional observa-
tion function and a corresponding atomic predicate for each conjunctive expression.
With this atomic predicate pk the AND expression is attributed, which is written in
the syntax of S ′ as an index ANDk , cf. table 4.1 above.

In the concrete implementation, the process of node creation corresponding
to a conjunctive expression, as described in the preceding paragraph, is suspended
after the creation of the ATst node (5.33). The further operations (creation of the
OrGr objects and of the nodes for the sub-expressions contained in the disjunctions
contained in the conjunction) are not executed until this observation function vk

changes to true. (5.19)(5.20)(5.38)

This feature contributes significantly to the efficiency, because the monitoring of
all sub-expressions of a conjunction can be a rather costly process. If it were started
earlier, it would only detect solutions of these sub-expressions which would (at least
partly) be discarded anyway when constructing the conjunctive combinations, or,
even worse, never lead to a valid combination.
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4.7.11 Deriving Verdicts

An OrGr object which does not contain a single LNode in the testing, time-in or in
a valid state, nor a single ATst node, it is called futile.

A futile OrGr will nevermore produce nodes which represent partial interpreta-
tions.

Therefore, as soon as one of its OrGr objects goes futile because the last LNode
node object it containes has terminated, (5.47)(5.53) the ATst node to which this
OrGr belongs, all of its OrGr objects and all recursively contained nodes therein are
deleted. (5.53)(5.54)

This may have the effect that the OrGr having contained the ATst node does
not contain a single node anymore and becomes futile itself, so that the process of
deletion continues recursively.(5.53) .

If the top level OrGr object GState.top becomes futile, the SpecUT cannot
be fulfilled any more. In this case, an early fail verdict is returned by the
algorithm.(5.11)

Contrarily, as soon as GState.top contains a valid node n representing the
specification particle i ,ap0 (i.e. a node representing the ANY construct from L S ,
which corresponds to the observation function v0 which is always true) and if the
maximal duration constraint a is either equal to ∞, or it is smaller, but the time
instant of the time-out request is beyond the known latest end of the test session,
then an early pass verdict is returned by the algorithm, because the SUT’s behaviour
will always fulfill that linear specification represented by n.(5.11)

If the end of the test session is reached, and the top level OrGr referred to by
GState.top contains any final node (i.e. a node which has reached the end of one
linearization of SpecUT), then the final verdict is pass, otherwise it is fail.(5.12)
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Chapter 5

Definition of the Kernel Algorithm

5.1 Structure of this Chapter

In this chapter the kernel algorithm is presented in several sections.

• Section 5.3 defines the types of data the algorithm works on.
• Section 5.4 defines the interface functions which are called by the adaptive

layer.
• Section 5.5 defines the top level scheduling functions, which call the functions

of the positive and the negative phases on the appropriate node objects, and
which schedule those evaluation steps which have not been triggered by a call
to iNotify(), because they are related only to internal timer expirations.

• Section 5.7 defines the reactions on the becoming-true of observation functions
and the expiring of min-timers, which cause nodes to enter a valid state, and
which lead to the creation of new node objects.

• Section 5.8 defines the special activities for calculating the solutions of con-
junctions. This section and the preceding one define the positive phase of each
evaluation step.

• Section 5.9 defines the negative phase of an evaluation step, containing the
reactions on the becoming-false of observation functions and the expiration of
max-timers.
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Chapter 5. Definition of the Kernel Algorithm

5.2 Principles of Modeling and Notation

The formulæ contained in this chapter constitute the ATCH kernel algorithm.

In contrast to its object-oriented implementation in the existing ATCH tool,
which uses C++ and high-order data structures like sets and maps from the Standard
Template Library (STL), the modeling contained herein is purely functional.

The functions realizing the positive and the negative phase of an evaluation
step operate on a set of objects, containing Node objects and the auxiliary OrGr

objects. This set is called N in the rest of this section.

Objects are modeled as schema values, i.e. elements of a product type with
named components, similar to the notion of schema known from the Z language.[19]

The names of the schema definitions are used as constructor functions, taking
a list of assignments which give the initial values of the named components, like
OrGr( exprX = expr ) in formula (5.8).

The modeling of the object collection as a mathematical set of expressions
is feasible because the combination of predecessor node, corresponding specifica-
tion particle and .eFirst is unique for all simultaneously existing node objects, and
therefore the corresponding algebraic expressions are always distinguishable, and
they uniquely identify the data object from the imperative implementation.1

In contrast to the implementation, where the inter-node relations are realized
by bi-directional references, partly involving set and map objects from the STL, in
the algebraic model the references are strictly ordered: a newly created object only
refers to “older” objects. The graph of all inter-node relations is thus non-cyclic.
The inverse relations are modeled by explicitely applying inquiry functions to the
complete set of nodes N (like usedInSolution() and successors() in formula (5.48)
etc.).

Therefore references to other node objects (as established by the values of
predec and solParts) can be modeled by simply repeating the corresponding
schema values, preserving the finiteness of N seen as an algebraic term.

The transformations on N are realized as follows:

The notation
s ′ = ( s ⊕ f1 = e1; f2 = e2; . . . )

means the derivation of a new schema value s ′ by overriding the values of the fields
f1, f2, . . . by the given expressions2, while copying the values of all other fields which
are not explicitely assigned a new value. This derivation is purely functional.

The first modifications in the life-time of a node object (entering the testing, a
time-in and a valid state) include the corresponding alterations of the node’s data
state. These alterations are purely local updates, since, as long as node is not yet
in a valid state, no other node can exist which has a reference to this object.

1The field .exprX has been added to the definition of the OrGr objects only to allow this kind
of modeling.

2If an attribute f1, f2, . . . appears in such an expression e on the right side of an initilization, it
refers to the value currently valid in s , i.e. the “old” value.
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Therefore the alteration of the global object set is just the exchange of its
current member no with the new, modified schema instance nn . This is written as

N3nn ÷ no
def
= (N \ {no}) ∪ {nn}

As soon as successor nodes are installed, or the node is used in the construction
of an ASol node, there do exist references to the node object.

The data state of a valid node object n will alter only if the observation function
corresponding to itself or to one of its predecessor nodes changes to false. In the
implementation, the necessary local alterations are realized by simply updating the
values of some fields of the corresponding “struct” object of the C++ language.

In the algebraic representation used herein, the modification has to be per-
formed in all terms contained in the node set which contain sub-terms representing
the reference to n.

Again, since the structure of the relations is strictly ordered and non-cyclic,
these global modifications can be precisely modeled in a pure functional way, by
application of the function

NFnn ÷ no

This function is defined in formula (5.45) and performs a recursive visiting of
all node expressions which represent successor nodes and ASol nodes referring to the
node n by some attribute value. In contrast to its recursive definition, its application
can simply be read as “exchange no by nn globally in the set of node objects”.

While this function performs the same visiting sequence as the algorithms in
section 5.9, both have by intention not been unified: The former is just a “modeling
trick” for representing the object oriented local update in the world of algebraic
terms and is not found in the implementation, while the latter are visitor operations
which are really executed in both worlds.

As mentioned above, the algorithm is presented in several sections.

The definitions of all central operational functions (i.e. the functions which per-
form transformations on the object set) which are exported by the containing text

section and applied in formulæ contained in other sections are marked by framing
their identifier. The application of an operational function which is defined in an-
other section is marked by underlining.

A similar mark-up is used for the definition and the application of auxiliary
functions which are used in more than one section. These functions only derive values
from the current state of the object set and do not execute any modifications.
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Chapter 5. Definition of the Kernel Algorithm

5.3 Data Types

Verdicts = { pass, fail, inconc }
D+ = D ∪ {∞}
T+ = T ∪ {∞}

(5.1)

Values+ = {p1, . . . , pGState.pCount} → Boolean
Values = {p0, p1, . . . , pGState.pCount} → Boolean
internalize(v : Values+) : Values = v ∪ (p0 7→ true)

(5.2)

GState = struct { nodes : ObjSet
top : OrGr

n−1 : LNode
pCount : N

firstcall : Boolean
vold : Values
tstartSession : T

sessionLimit : D+

}
(5.3)

EState = struct { nodes : ObjSet
values : Values
now : T

visited : L S ′

}
(5.4)

The special value ∞ : T+ is used as the time instant value of events which
have not yet happened (e.g. n.eLast = ∞ indicates that the predecessor node has
not yet gone invalid) or which are not scheduled to happen (e.g. n.toPending = ∞
means that no time-out timer request is currently active for the node n).

For this value the following operations are defined:

∀ t ∈ T •
∞ + t = ∞
∞− t = ∞
t < ∞ = true

(5.6)

Further combinations are used in the formulæ neither of this nor of the following
chapter.

The special value ∞ : D+ represents an unspecified maximal duration require-
ment, and it is used as a value for the parameter maxSessionDuration to iInit() if
the maximal session duration is not known in advance.

To ∞ : D+ and D the same arithmetic rules apply as to ∞ : T+ and T,
respectively.

The functions earliest() and latest() take a collection of time instants and deliver
the minimum resp. maximum value contained in this set. The wording has been
chosen for the sake of intuition, esp. in the proof discussions contained in chapter 6.
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Figure 5.1 The Object World of the Evaluating Machine in Graphical Notation
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An instance of the schema GState models the global state the algorithm works
on. Its main component .node is the above-mentioned collection of Node objects
and auxiliary OrGr objects. Further on GState contains constant configuration pa-
rameters, and a cache for the values the observation functions have taken at the
last call of iNotify(). This set is needed for those evaluation steps caused by timer
expirations which have not yet been executed between the last and the current call
of iNotify , as described in section 4.4 above.

The data type EState is an auxiliary data type which all transformations in the
positive phase of the evaluation step operate on. It simply bundles the parameters
.now and .values, the “in-out-parameter” .nodes and an accumulator of already
installed REPst-expressions (=.visited) which is needed for preventing life-locks.
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Chapter 5. Definition of the Kernel Algorithm

Node = struct { expr : opt3 L S ′

predec : opt3 LNode
livesIn : opt3 OrGr

}
LNode = Node + struct { seFirst , seLast : T+

sumMinPreds : D

sumMaxPreds : D+

tiPending , toPending : T+

endReached : Boolean
}

Prime = LNode + struct { eFirst , eLast : T+

pNum : N

}
ASol = LNode + struct { solParts : set of LNode

aeFirst : T

aeLast : T+

minSubSum,
maxSubSum : D+

}
ATst = Node + struct { pNum : N

seFirstCache, seLastCache : T+

}
OrGr = struct{ tstPartOf : opt4 ATst

exprX : L S ′

}
(5.6)

LNode = Prime ∪ ASol

RNode = Prime ∪ ATst

Node = Prime ∪ ASol ∪ ATst

Object = Node ∪ OrGr

ObjSet = set of Object
(5.7)

3Only for the pseudo-node n−1, representing the meta-condition “test session has not yet
started”, this fields may and must be = null.

4Only for the special OrGr-object GState.top this field may and must be = null.
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5.4 Interface Functions

iInit (expr : L S ′, predicateCount : N,maxSessionDuration : D+) : GState
= GState ( top = OrGr( exprX = expr )

n−1 = LNode( expr = predec = livesIn = null )

pCount = predicateCount
firstCall = true
sessionLimit = maxSessionDuration
nodes = E2.nodes

)
where allFalse : Values = {(p0 7→ false), . . . , (ppredicateCount 7→ false)}

E1 = EState ( nodes = {n−1, top}, values = allFalse,
visited = {}, now = ⊥)

E2 = termInst (E1, n−1, top, (expr ;44) )
(5.8)

iNotify (G : GState, now : T, v : Values+) : GState × Verdict × T+

= (G3, deriveVerdict(G2), tnext)
where v1 = internalize(v)

G1 = G ⊕ (tstartSession = now ; firstCall = false)

G2 = if G .firstCall then evalNodes initial (G1, t , v1)
otherwise evalNodes (G , t , v1)

G3 = G2 ⊕ (vold = v2)
tnext = earliest ( map (G2.nodes, .tiPending)

∪map (G2.nodes, .toPending) ∪ {∞} )
(5.9)

iFinalize (G : GState, now : T) : Verdict \ {inconc}
= deriveVerdict final(evalNodes final (G))

(5.10)
deriveVerdict(G : GState) : Verdict

= if G .top = {} then fail

if ∃ n ∈ finalNodes(G .top)
• n.expr = ,ap0

∧ te = G .tstartSession + G .sessionLimit < ∞
∧ earliest (tnow , n.eLast) + a ≥ te then pass

otherwise inconcl

(5.11)
deriveVerdict final(G : GState) : Verdict \ {inconc}

= if finalNodes(G .top) = {} then fail

otherwise pass

(5.12)

finalNodes (N : ObjSet , o : OrGr) : set ofLNode
= {n ∈ allInhabitants(N , o) ∩ LNode | n.endReached = true}

(5.13)
allInhabitants (N : ObjSet , o : OrGr) : set ofNode

= {n ∈ N ∩ Node | n.livesIn = o}
(5.14)
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5.5 Top Level Scheduling Functions

evalNodes initial (g : GState, t : T, v : Values) : GState = g ⊕ (nodes = N2)
where N1 = execute goTrue(g .N , t , v , goingActive(g .N , v) )

N2 = execute goFalse(N1, t , {g .n−1} )
(5.15)

evalNodes (g : GState, t : T, v : Values) : GState = g ⊕ (nodes = N4)
where N1 = execute minMax (g .N , t , g .vold )

N2 = execute goTrue(N1, t , v , goingActive(N1, v) )
N3 = execute goFalse(N2, t , goingInactive(N2, v) )
N4 = execute max (N3, t , timingOut(N3, t) )

(5.16)

evalNodes final (g : GState, t : T) : GState = g ⊕ (nodes = N1)

where N1 = execute minMax (g .N , t , g .vold )
(5.17)

execute minMax (N : ObjSet , t : T, v : Values) : ObjSet
= if ti ≤ to ∧ ti ≤ t then execute minMax (N1, t , v)

if ti > to ∧ to < t then execute minMax (N2, t , v)
otherwise N

where ti = earliest (map(N , .tiPending) ∪ {∞} )
to = earliest (map(N , .toPending) ∪ {∞} )
N1 = execute min(N , ti , v , timingIn(N , ti))
N2 = execute max (N , to, v , timingOut(N , to))

(5.18)
execute min(N : ObjSet , t : T, v : Values,NI : ObjSet) : ObjSet

= reduce (NI ,LNode timeIn( , t , v , ),N )
execute max (N : ObjSet , t : T,NO : ObjSet) : ObjSet

= reduce (NO ,LNode terminates( , t , ),N )
execute goTrue(N : ObjSet , t : T, v : Values,NT : ObjSet) : ObjSet

= reduce (NT ,RNode signalRaises( , t , v , ),N )
execute goFalse(N : ObjSet , t : T,NF : ObjSet) : ObjSet

= reduce (NF ,Prime terminates( , t , ),N )
(5.19)
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RNode signalRaises (N : ObjSet , t : T, v : Values, n : LNode) : ObjSet

= if n ∈ ATst then ATst installParts(E , n).nodes
if n ∈ Prime ∧ minDura(n) > 0.0 then

N3(n ′ ⊕ tiPending = t + minDura(n)) ÷ n
if n ∈ Prime ∧ minDura(n) = 0.0 then LNode timeIn(N , t , v , n ′)

where E = EState(now = t , values = v , visited = {}, nodes = N )
n ′ = n ⊕ eFirst = t ; seFirst =

if isLeading(n) then t
otherwise latest(n.predec.seFirst , t − n.sumMaxPreds)

(5.20)

LNode timeIn(N : ObjSet , t : T, v : Values, n : LNode) : ObjSet = N2

where N1 = N13(n ⊕ (tiPending = ∞) ) ÷ n
E = EState(now = t , values = v , visited = {}, nodes = N1)
N2 = LNode becomesValid(E , n).nodes

(5.21)

minDura (n : Prime) : D = i where n.expr = i , p ; e
minDura (n : ASol) : D = n.minSubSum

(5.22)
goingActive(N : ObjSet , v : Values) : set ofRNode

= {n ∈ N ∩ RNode | v [n.pNum] = true ∧ isTesting(N , n)}
goingInactive(N : ObjSet , v : Values) : set of Prime

= {n ∈ N ∩ Prime | v [n.pNum] = false ∧ isActive(n)}
timingIn(N : ObjSet , t : T) : set ofLNode = {n ∈ N ∩ LNode | n.tiPending = t}
timingOut(N : ObjSet , t : T) : set ofLNode = {n ∈ N ∩ LNode | n.toPending = t}

(5.23)
isActive(n : Prime) : Boolean = (n.eFirst 6= ∞)

(5.24)
isTesting : set of LNode × LNode → Boolean
isTesting(N , n : Prime) = ¬ isActive(n)
isTesting(N , n : ATst) = ( tstParts(N , n) = {} )

(5.25)
tstParts (N , n) : set of OrGr

= {o ∈ N ∩ OrGr | o.tstPartOf = n}
(5.26)

isLeading (n : Node) : Boolean = n.livesIn 6= n.predec.livesIn
(5.27)
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5.6 Internal Auxiliary Functions

reduce (s : set of S , f : S × V →V , v : V ) : V
= if s = {} then v

otherwise reduce (s \ {t}, f , f (t , v))
where t ∈ s

(5.28)

map (s : set of S , f : S → T ) : set of T
= reduce (s, ∪ {f ( )}, {})

(5.29)

N 3 n2 ÷ n1 : ObjSet × Prime × Prime → ObjSet
= (N \ {n1}) ∪ {n2}

(5.30)

In the following text, the function-valued argument passed to reduce and
map is written simply as an expression containing place holders, e.g. “ ∪{ }”. The
assignment of arguments to parameters is always uniquely defined by their types.

5.7 Nodes Entering a Valid State

LNode becomesValid (s : EState, n : LNode) : EState = nextInst(e, n, n.expr)
(5.31)

nextInst(s : EState, n : LNode, e : L S ′) : EState
= if hd ∈ L REPst ∧ e 6∈ s.visited

then terminst(s ⊕ (visited = s.visited ∪ {e}), n, n.livesIn, e)
otherwise terminst(s, n, n.livesIn, tl)

where e = hd ; tl ∧ hd 6∈ L ;

(5.32)

termInst (s : EState, n : LNode, o : OrGr,e : L S ′) : EState
= if e = 4Ethen termInst(s, n, o,E )

if e = 44then LNode endReached(s, n)
if e = OPTE ;F then termInst(termInst(s, n, o,F ), n, o,E;F )
if e = (REPstE ) ;F then termInst(termInst(s, n, o,F ), n, o,E;4e)
otherwise // i.e. e = AND{};F ∨ e = , p ;F

checkNewActive(s ⊕ (nodes = nodes ∪ {N }),N )
where N = newNode(n, o, e)

(5.33)
checkNewActive(s : EState, n : LNode) : EState

= if s.values[n.pNum] = true then RNode signalRaises(s, n)
otherwise s

(5.34)
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newNode (pred : LNode, o : OrGr,e : L S ′) : RNode
= if e = i ,apk ;α then Prime ( expr = e, pNum = k

predec = pred , livesIn = o
endReached = false

eFirst = eLast = ∞
seFirst = ⊥
seLast =

if isLeading(this)then ∞
otherwise pred .seLast

tiPending = toPending = ∞
sumMinPreds = calcMinPreds(this)
sumMaxPreds = calcMaxPreds(this)
)

if e = ANDk ;α then ATst ( expr = e, pNum = k
predec = pred , livesIn = o
sumMinPreds = calcMinPreds(this)
sumMaxPreds = calcMaxPreds(this)
seFirstCache = seLastCache = ∞
)

(5.35)
calcMinPreds(n : Node) : D

= if isLeading(n)then 0.0
otherwise n.predec.sumMinPreds + minDura(n.predec)

calcMaxPreds(n : Node) : D+

= if isLeading(n)then 0.0
otherwise n.predec.sumMaxPreds + maxDura(n.predec)

(5.36)
maxDura (n : Prime) : D+ = a where n.expr = ,ap ; e
maxDura (n : ASol) : D+ = n.maxSubSum

(5.37)

ATst installParts (s : EState, a : ATst) : EState
= reduce(O , installOrGroup( , a, ), s)

where a.expr = AND(O)
(5.38)

installOrGr(s : EState, a : ATst,e : L t or) : EState
= reduce(T , termInst ( , a.predec, o, ( ;44) ), s)

where o = new OrGr(tstPartOf = a, exprX = t)
t = OR(T )

(5.39)
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5.8 Creating Solutions of Conjunctions

LNode endReached (s : EState, n : LNode) : EState
= ATst newSolutions(s1, n1, n.livesIn, n.livesIn.tstPartOf )
where n1 = n ⊕ (endReached = true)

s1 = s ⊕ (nodes3n1 ÷ n)

(5.40)
ATst newSolutions(s : EState, n : LNode, o : OrGr,A : ATst) : EState

= reduce (allCombinations(s.nodes, a, o), installSolution( , n, ,A), s)
(5.41)

installSolution(s : EState, n : LNode,N : set ofLNode,A : ATst) : EState
= if¬ (a.aeFirst ≤ a.aeLast ∧ a.minSubSum ≤ a.maxSubSum) then s

otherwise
if a.tiPending = ∞ then LNode becomesValid(s ′, a)
otherwise s ′

where s ′ = s ⊕ (nodes = nodes ∪ {a} )
a = ASol ( solParts = N ∪ {n}

aeFirst = latest (map(solParts, .seFirst) )
aeLast = earliest (map(solParts, .seLast) )
minSubSum = max (map(solParts,minSum( )) )
maxSubSum = min (map(solParts,maxSum( )) )
expr = ⊥
predec = A.predec
livesIn = A.livesIn
endReached = false

sumMinPreds = A.sumMinPreds
sumMaxPreds = A.sumMaxPreds

tiPending =







aeFirst + minSubSum
if aeFirst + minSubSum > s.now

∞ otherwise

toPending =







aeLast + maxSubSum
if aeLast + maxSubSum < ∞

∞ otherwise

seFirst =







aeFirst if isLeading(a)
latest {predSeFirst , aeFirst − sumMaxPreds}

otherwise

seLast =







aeLast if isLeading(a)
earliest {predSeLast , aeLast − sumMinPreds}

otherwise
)

minSum(n : LNode) : T = n.sumMinPreds + minDura(n)
maxSum(n : LNode) : T = n.sumMaxPreds + maxDura(n)
predSeLast = pred .seLast ifA.seLastCache = ∞

A.seLastCache otherwise
predSeFirst = pred .seFirst ifA.seFirstCache = ∞

A.seFirstCache otherwise
(5.42)
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allCombinations(N : ObjSet , a : ATst, o : OrGr) : set of set of LNode
= reduce (tstParts (N , a) \ {o}, comb0(N , , ), {{}})

comb0(N : ObjSet , o : OrGr, grown : set of set of LNode)
= map (finalNodes(N , o), comb1( , grown))

comb1(n : LNode, grown : set of set of LNode)
= map (grown, ({n} ∪ ))

(5.43)

This correct, but complicated definition can be explained by the following in-
formal definition:

allCombinations(N : ObjSet , a : ATst, o : OrGr) : set of set of LNode
= convertTupleToSet (| finalNodes(o1) × . . . × finalNodes(ok) |)
where {o1, . . . , ok} = tstParts(N , a) \ {o}

(5.44)
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5.9 Termination of Nodes

N F n2 ÷ n1 : ObjSet × Prime × Prime → ObjSet
∪ ObjSet × ASol × ASol → ObjSet

N F n2 ÷ n1 = N2

where N1 = reduce (successors(n1),
(λX , x • XF(x ⊕ (predec = n2)) ÷ x ) ,N )

N2 = reduce (usedInSolutions(n1),
(λX , x • XF(x ⊕ (solParts = solParts \ {n1} ∪ {n2})) ÷ x ) ,N1)

(5.45)

Prime terminates (N : ObjSet , now : T, n : Prime):ObjSet
= if¬ isFixed(n) LNode terminates(N ∪ newnode(n.predec, n.livesIn, n.expr),

now , n)

otherwise LNode terminates(N , now , n)
(5.46)

LNode terminates (N : ObjSet , now : T, n : LNode) : ObjSet = N3

where N1 = reduce (successors(N , n),RNode becomesFixed( , ),N )
N2 = reduce (usedInSolutions(N1, n),LNode terminates( , t , ),N1)

N3 = ATst alternativeGetsLost(N2, n) \ {n}

(5.47)
isFixed(n : Prime) : Boolean = (n.eLast 6= ∞)
successors(N : ObjSet , n : LNode) : set ofRNode

= {x ∈ N | x .predec = n }

usedInSolutions(N : ObjSet , n : LNode) : set of ASol
= {x ∈ N ∩ ASol | n ∈ x .solParts}

(5.48)
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RNode becomesFixed(N : ObjSet , now : T, n : Prime):ObjSet

= if isTesting(n) then (ATst alternativeGetsLost(N , n)) \ {n}

otherwise LNode SEL lowers(NFn ′ ÷ n, newSEL, now , n ′)
where newSEL = now − n.sumMinPreds

n ′ = n ⊕ (toPending = now + maxDura(n), eLast = now)

(5.49)
RNode becomesFixed(N : ObjSet , now : T, n : ATst):ObjSet

= if isTesting(n) then (ATst alternativeGetsLost(N , n)) \ {n}

otherwise NFn ′ ÷ n
where n ′ = n ⊕ ( seFirstCache = n.pred .seFirst ;

seLastCache = earliest(n.pred .seLast , now − n.sumMinPreds)

(5.50)
LNode SEL lowers(N : ObjSet , t : T, now : T, n : LNode) : ObjSet

= if t ≥ n.selLast then N
otherwise N2Fn ⊕ (seLast = t) ÷ n

where S = {m | m ∈ successors(N , n) ∧ ¬ isLeading(m)}
N1 = reduce(S ,LNode SEL lowers( , t , now , ),N )
N2 = reduce(usedInSolutions(N , n),ASol subSEL lowers( , t , now , ),N1)

(5.51)
ASol subSEL lowers(N : ObjSet , t : T, now : T, n : ASol):ObjSet

= if t < n.aeFirst then ATst alternativeGetsLost(N , n) \ {n}

if t ≥ n.aeLast then N
otherwise
if n1.toPending > now then

LNode SEL lowers(N1, t − sumMinPreds(n), now , n1)
otherwise LNode terminates(N1, now , n1)

where n1 = n ⊕ (aeLast = t ; toPending = t + maxSubSum)
N1 = N Fn1 ÷ n

(5.52)
ATst alternativeGetsLost(N : ObjSet , n : Node) : ObjSet

= if allInhabitants(N , n.livesIn) \ {n} = {} then N2

otherwise N
where N1 = deleteAll(N , n.livesIn.tstPartOf )

N2 = ATst alternativeGetsLost(N1, n.livesIn.tstPartOf )
(5.53)

deleteAll(N : ObjSet , n : ATst) : ObjSet =

(reduce(tstParts(N , n), deleteAll( , ),N ) ) \ {n}

deleteAll(N : ObjSet , n : OrGr) : ObjSet =

(reduce(allInhabitants(N , n), deleteAll( , ),N ) ) \ {n}

deleteAll(N : ObjSet , n : Prime) : ObjSet = N \ {n}

deleteAll(N : ObjSet , n : ASol) : ObjSet = N \ {n}

(5.54)
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Chapter 6

Proofs

6.1 Structure of this Chapter

This chapter contains proofs w.r.t. several properties of the algorithm.

The most important of these propoerties are called correctness and complete-
ness in the following.

Correctness means, that if the algorithm delivers a pass verdict, the SUT’s
trace indeed fulfills SpecUT.

Completeness means, that if the SUT’s trace fulfills SpecUT, then the algorithm
delivers a pass verdict.

Further proof obligations concern the termination of the algorithm, and the
correctness of the way in which the algorithm treats nodes in the terminated state.
These proofs are distributed to the sections of this chapter as follows :

• Section 6.3 demonstrates the fundamental lemma for the proof of correctness,
which says that each valid node object represents an interpretation of a prefix
of the SUT’s behaviour w.r.t. a prefix of one linear specification derived from
SpecUT.

• Section 6.4 demonstrates the fundamental lemma for the proof of completeness,
which says that each partial interpretation of the SUT’s behaviour implies the
existence of a valid node object.

• Section 6.5 applies the results of section 6.3 and 6.4 to show the correctness
and completeness of the final and early verdicts.

• Section 6.6 demonstrates that the execution of the algorithm always termi-
nates.

• Section 6.7 demonstrates that a specific optimization applied in the implemen-
tation, namely the complete deletion of node objects which have reached the
terminated state, does not affect the other properties.

The proofs concerning correctness and the treatment of terminated node ob-
jects are widely formalized, — w.r.t. the other targets this seems neither necessary
nor useful.
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Chapter 6. Proofs

In spite of the non-deterministically defined functions map() and reduce()
being frequently used in the definition of the algorithm in chapter 5, no explicit
proof of confluence is necessary : Since the algorithm only delivers one of two values,
confluence is implied by the conjunction of correctness and completeness.

6.2 Notational Conventions and Global Abbrevi-

ations

In the following text, let . . .

D = D[tstartSession ...tendSession ] ∈ R+

be a certain SUT’s trace data during a complete test session.

Further, D[t1...t2] ∈ R+ with tstartSession ≤ t1 < t2 ≤ tendSession denotates a
non-empty sub-trace of D extending from t1 to t2.

Further, in the following text the notation . . .

vk [t ] (6.1)

refers to the value of the observation function indexed by the atomic predicate pk

at the time instant t .

Note that t must not be a critical time instant w.r.t. pk , because at these time
instants a single value for vk cannot be given.1

Further we define a function expHd , which delivers the own specification par-
ticle of a Prime node, which is the head of the subsequent expression for which the
node has been created (cf. section 4.7.5) :

expHd : Prime → L S ′

(n.expr = i ,apk ; β) ⇐⇒ (n.expHd = i ,apk)
(6.2)

Then we can calculate the linear specification, for which a given node represents
partial interpretations, by . . .

SPath : LNode → L S ′′

SPath n =

{

n.expHd if n.predec = n−1

(SPath (n.predec)) ; n.expHd otherwise

(6.3)

. . . and a function for extracting sub-sequences of this linear interpretation,
which extend from one node to one of its transitive successor nodes, by . . .

SPath ; : LNode × LNode → L S ′′

SPath nf ; nt =

{

nf .expHd if nf = nt

(SPath nf ; nt .predec) ; nt .expHd otherwise

(6.4)

1This imposes no severe problem, because the same “trick” can be used as mentioned in the
footnote on page 23.
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The following formulæ and considerations refer to the objects and their at-
tributes of the evaluating machine, as described in the previous chapter. In the
formulæ contained therein, the transformations are defined which are applied to the
data state of the algorithm in one single evaluation step. Their definitions have
been given as pure and time-less functions.

Contrarily, the following interpretations have to consider the evolution of the
data state in course of the test session, i.e. an ordered sequence of multiple data
states, caused by the execution of multiple evaluation steps.

In the physical reality of the implementation of course all data values and object
states are functions from time into some range. But most of these time dependencies
are restricted just to the creation and initialization of an object, and most of the
data values do take a constant value during the whole further development. For the
sake of readability, these trivial time dependencies will be left implicit .

Contrarily, whenever an attribute of an object is intended to change during ex-
ecution, it is explicitly modeled as a function from T into its range, and all references
to such an attribute are written as function applications. The domain value, which
is a time instant, is written as an index. By this notation a maximal similarity is
achieved between the graphical appearances of the time-less formulæ in chapter 5
and the corresponding dynamic formulæ in this chapter.

Let n be a node object, and g be the global state the algorithm works on, then
we will write in the following text :

n.eFirst . . . because .eFirst will stay constant throughout the
life-time of the node object n.

n.predec . . . because .predec is fixed with the creation of the node
object.

ntnow
.elast . . . because the value of .eLast may change with each

evaluation step.
isValid(nt0) . . . because the function result depends on non-

constant attribute values.
finalNodes(gt .top) . . . because the global state is dynamic.

(6.5)

Note that e.g. the notations finalNodes(gt .top), finalNodes(g .topt) and even
finalNodest (g .top) are equivalent, since the certain attribute value itself as well as
the object as a whole can be regarded as a dynamically defined value, — the param-
eter modeling the “current time” can be inserted at any position in the sequence of
parameters, because it is uniquely identified by this notation.
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According to the structure of the inductive derivations contained in this chap-
ter, the following notation is used :

α
∧ β

β ′

β ′′

. . .
γ
γ′

. . .

It denotates graphically (1) that α and β are some premises, (2) that β ′, β ′′, . . .
is a chain of conclusions the first of which is derived only from β, and (3) that γ is
drawn from α and the last β ′′....

6.3 Correctness

6.3.1 Contents and Structure of this Section

The derivations in this chapter prove that each currently valid node represents an
interpretation of the prefix of the SUT’s traces w.r.t. a prefix of one linearization of
SpecUT. This is expressed by the central lemma (6.27) on page 64.

This lemma is derived in an inductive way by the following steps :

• Section 6.3.2 demonstrates that each valid Prime node represents the maximal
set of segments, which fulfill its specification particle and start when the node’s
predecessor has been valid.

• Section 6.3.3 demonstrates by simple induction, that each valid Prime node
represents a partial interpretation, if SpecUT is a simple chop sequence of i ,apk

specifications.
• Section 6.3.4 derives the semantics of nodes which are part of a node chain

corresponding to a sub-expression of an AND/OR expression.
• Section 6.3.5 constructs the semantics of ASol nodes, using the result of the

preceding section.
• Section 6.3.6 demonstrates that ASol nodes which correspond to AND/OR ex-

pressions containing only Prime nodes, can be embedded into the top level
specification expression without losing the central result of section 6.3.4.

• Section 6.3.7 proves that the results of section 6.3.4 still hold when ASol nodes
are embedded into these sub-expressions of AND/OR expressions, which makes
the central lemma (6.27) valid for arbitrarily nested specification terms.

58 markuslepper.eu

 

http://markuslepper.eu
http://www.worldcat.org/search?q=


6.3.2 States and Local Semantics of Prime Nodes

6.3.2 States and Local Semantics of Prime Nodes

The semantics properties of node objects are based on the definition of a valid node.

For ASol nodes a definition is given in (6.46) on page 73.

In case of Prime nodes2 the different states under discussion (cf. figure 4.3) are
defined by . . .

isTesting(n : Prime) ⇐⇒ (n.eFirst = ∞)
timeIn(n : Prime) ⇐⇒ (n.eFirst 6= ∞ ∧ n.tiPending 6= ∞)
isValid(n : Prime) ⇐⇒ (n.eFirst 6= ∞ ∧ n.tiPending = ∞)

(6.6)

The fundamental property of each valid Prime node is given by the following
lemma (6.7). A corresponding property will be defined later also for ASol-nodes, see
formula (6.47) in section 6.3.5 on page 74, so that all LNode objects can be treated
in a uniform way.

∀ tnow , t : T, n : Prime | isValid ntnow

∧ n.expHd = i ,apk

∧ t0 = latest(n.eFirst , tnow − a)
∧ t2 = earliest(ntnow

.eLast , tnow − i)
• t0 ≤ t ≤ t2 ⇐⇒

(

D[t ...tnow ] ∈ [[ i ,apk ]]L ∧ isValid (n.predec)t
)

∧ t0 ≤ t2

(6.7)

This property means that for a given Prime node n, which is in a valid state
at some time instant tnow , the interval from t0 to t2 is the maximal set of real-time
instants which can be used as a segment’s start time, if this segment shall (1) fulfill
the specification particle i ,apk , (2) begin at some time instant when the node serving
as n.predec was in a valid state, and (3) extend up to tnow .

It secondly implies that this set of intervals is always non-empty.

The first consequence of formula (6.7) can be decomposed into a conjunction
of three propositions, the validity of which is demonstrated separately as follows :

( t0 ≤ t ≤ t2 ⇐⇒
(

D[t ...tnow ] ∈ [[ i ,apk ]]L ∧ isValid (n.predec)t
)

)
= ( t0 ≤ t ≤ t2 =⇒

(

D[t ...tnow ] ∈ [[ i ,apk ]]L ∧ isValid (n.predec)t
)

∧ t < t0 =⇒
(

¬ D[t ...tnow ] ∈ [[ i ,apk ]]L
)

∨ (¬ isValid (n.predec)t )
∧ t2 < t =⇒

(

¬ D[t ...tnow ] ∈ [[ i ,apk ]]L
)

∨ (¬ isValid (n.predec)t )
)

(6.8)

2For the sake of readability, the notation “Prime” is used in the following text as equivalent to
the notation “Prime”.
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Any node n which is in a valid state at time instant tnow can have reached this
state in one of three ways (cf. figure 4.3) :

(1) The node n has been created in the testing state at some time instant
tp , in the same evaluation step in which its predecessor n.predec has become valid.
This is implemented by the procedure nextInst()(5.32) being immediately called by
LNode becomesActive()(5.31). Since further each node can become valid only once in
its life cycle, it further holds that

∀ t : T | t ≤ tp • ¬ isValid(n.predec)t (6.9)

The node n changes to the time-in state immediately at tp , in the same evalu-
ation step, iff vk has already been true and stays true, or changes to true at this
very moment (both expressed by vk [tp ] = true).

This is implemented by the procedure checkNewActive()(5.34), which is called
by termInst()(5.33) after n has been created in the testing state. In this case it holds
that tp = n.eFirst .

(2) Otherwise n changes to the time-in state at some later time instant,
namely as soon as vk becomes true at n.eFirst > tp . This can happen only
in the positive part of a subsequent evaluation step, performed by the function
RNode signalRaises()(5.20), which is called on every node which is in a testing state
when the corresponding external predicate becomes true in this very evaluation
step.

So in both cases following negative consequences hold :

∀ tnow , t : T, n : Prime | isValid ntnow

∧ n.expHd = i ,apk

• t < tp =⇒ ¬ isValid(n.predec)t
∧ tp ≤ t < n.eFirst =⇒ ¬ vk [t ] = true

(6.10)

. . . which can be rewritten by applying the definition of [[ , pk ]]
L to . . .

. . .
• t < tp =⇒ ¬ isValid(n.predec)t
∧ tp ≤ t < n.eFirst =⇒ D[t ...tnow ] 6∈ [[ , pk ]]

L

(6.11)

(3) In a third case n is created in the testing state, as soon as a different
node n ′, with identical values of .predec and .expr terminates at the time instant tq ,
while n.predec is still valid. This is realized by calling newNode()(5.35) in course of
the execution of Prime terminates()(5.46), and is needed for catching a subsequent
becoming-true-again of the observation function vk for recognizing the different pos-
sible interpretations of the input data, cf. the last two node objects representing
both “p ; q ; r” in figure 4.2.

60 markuslepper.eu

 

http://markuslepper.eu
http://www.worldcat.org/search?q=


6.3.2 States and Local Semantics of Prime Nodes

Since vk cannot become externally false and true in the same evaluation step,
the node n can enter a valid state not before a non-zero duration has passed after
tq . Therefore, in this third case it holds that . . .

∀ tnow , t : T, n : Prime | isValid ntnow

∧ n.expHd = i ,apk

• tp < tq < t < n.eFirst =⇒ ¬ vk [t ] = true

(6.12)

. . . which can again be rewritten by applying the definition of [[ , pk ]]
L to . . .

. . .
• t < n.eFirst =⇒ D[t ...tnow ] 6∈ [[ , pk ]]

L (6.13)

From formula (6.11) as well as from (6.13) it follows that . . .

∀ tnow , t : T, n : Prime | isValid ntnow

∧ n.expHd = i ,apk

• t < n.eFirst =⇒ ¬ isValid(n.predec)t
∨ D[t ...tnow ] 6∈ [[ , pk ]]

L

(6.14)

In all three cases there had been no intervening evaluation step between
n.eFirst and tnow in the negative phase of which n left its valid state, because
this would imply the transition of n into the terminated state, from which no valid
state is reachable, — a contradiction to isValid(ntnow

).

Since a transition to the terminated state must occurs when the observation
function corresponding to a valid Prime node goes false (5.16)(5.19)(5.47), it holds that

∀ tnow , t : T, n : Prime | isValid ntnow

∧ n.expHd = i ,apk

• n.eFirst ≤ t ≤ tnow =⇒ vk [t ] = true

(6.15)

. . . from which follows a fundamental semantic property, namely that all segments
starting at any time instant ≥ n.eFirst fulfill 0,∞pk , which is the specification particle
of n without its duration requirements :

∀ tnow , t : T, n : Prime | isValid ntnow

∧ n.expHd = i ,apk

• n.eFirst ≤ t ≤ tnow =⇒ D[t ...tnow ] ∈ [[0,∞pk ]]
L

(6.16)

In the evaluation step when n entered the time-in state, the node n.predec
has been valid, too. This is because the leaving of its valid state is signaled to n
by calling RNode becomesFixed(), which would have removed the node n from the
object set in case it would still have been in the testing state (5.49).

If n is in the time-in or active state, the time instant of this event is recorded
in n.eLast , which changes from ∞ to the current time. So it follows that . . .

∀ tnow , t : T, n : Prime | isValid ntnow

• n.eFirst ≤ t ≤ earliest(tnow , ntnow
.eLast) =⇒ isValid(n.predec)t

∧ ntnow
.eLast < t =⇒ ¬ isValid(n.predec)t

(6.17)
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If the expressions n.expHd has a minimum duration requirement i > 0.0, all
sub-traces which begin at t and shall end at time instant tnow must fulfill the con-
dition tnow − t ≥ i , according to the definition of the semantics of MIN i p in for-
mula (3.3) above. Rewriting to t ≤ tnow − i shows, that these sub-traces must not
begin later than tnow − i . Because a valid state is entered for any node at time
instant eFirst + i , when the min-timer expires(5.21), it is always guaranteed for a
valid node that tnow ≥ eFirst + i .

So we get . . .

∀ tnow , t : T, n : Prime | isValid ntnow

∧ n.expHd = i ,apk

• n.eFirst ≤ t ≤ tnow − i =⇒ D[t ...tnow ] ∈ [[i ,∞pk ]]
L

∧ tnow − i < t =⇒ D[t ...tnow ] 6∈ [[i ,∞pk ]]
L

(6.18)

Similar, if a maximal duration requirement a < ∞ is imposed on ,apk , a sub-
trace D[t ...tnow ] ∈ [[ ,apk ]]

L (i.e. a sub-trace which fulfills ,apk and extends up to tnow )
must fulfill the condition tnow − t ≤ a, and begin not earlier than tnow − a.

So we get . . .

∀ tnow , t : T, n : Prime | isValid ntnow

∧ n.expHd = i ,apk

• latest(n.eFirst , tnow − a) ≤ t ≤ tnow =⇒ D[t ...tnow ] ∈ [[0.0,apk ]]
L

∧ t < tnow − a =⇒ D[t ...tnow ] 6∈ [[0.0,apk ]]
L

(6.19)

Now the different inequalities with negated consequences can be disjunctively
combined as follows:

∀ tnow , t : T, n : Prime | isValid ntnow
∧ n.expHd = i ,apk •

t < n.eFirst =⇒ ¬ isValid(n.predec)t ∨ D[t ...tnow ] 6∈ [[ , pk ]]
L (6.14)

t < tnow − a =⇒ D[t ...tnow ] 6∈ [[0,apk ]]
L (6.19)

t < latest(n.eFirst , tnow − a) =⇒ ¬ isValid(n.predec)t ∨ D[t ...tnow ] 6∈ [[i ,apk ]]
L

ntnow
.eLast < t =⇒ ¬ isValid(n.predec)t (6.17)

tnow − i < t =⇒ D[t ...tnow ] 6∈ [[i ,∞pk ]]
L (6.18)

earliest(ntnow
.eLast , tnow − i) < t =⇒ ¬ isValid(n.predec)t ∨ D[t ...tnow ] 6∈ [[i ,apk ]]

L

(6.20)

The inequalities with positive consequences must be conjugated :

∀ tnow , t : T, n : Prime | isValid ntnow
∧ n.expHd = i ,apk •

n.eFirst ≤ t ≤ earliest(tnow ,ntnow
.eLast) =⇒ isValid(n.predec)t (6.17)

n.eFirst ≤ t ≤ tnow − i =⇒ D[t ...tnow ] ∈ [[i ,∞pk ]]
L (6.18)

latest(n.eFirst , tnow − a) ≤ t ≤ tnow =⇒ D[t ...tnow ] ∈ [[0.0,apk ]]L (6.19)

latest(n.eFirst , tnow − a) ≤ t ≤ earliest(tnow − i ,ntnow
.eLast) =⇒ isValid(n.predec)t

∧ D[t ...tnow ] ∈ [[i ,apk ]]L

(6.21)
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6.3.2 States and Local Semantics of Prime Nodes

Since the conclusions of formulae (6.20) and (6.21) correspond to the three
statements in (6.8), the first consequence of the fundamental property (6.7) has
been demonstrated.

6.3.2.1 Proof of the Non-Emptiness of {t0 . . . t2}

To demonstrate the non-emptiness of the interval in which (6.7) holds, means to
show that . . .

isValid(ntnow
) =⇒ latest(n.eFirst , tnow −a) ≤ earliest(ntnow

.eLast , tnow −i) (6.22)

This implication holds, because its consequence holds in all combinations of
left and right sides :

n.eFirst ≤ ntnow
.eLast (6.23)

. . . because in the evaluation step when n entered the time-in state, the node n.predec
has been valid, — cf. the argumentation for formula (6.17) starting on page 61.

n.eFirst ≤ tnow − i (6.24)

. . . because the state transition from the time-in state into the valid state can-
not happen earlier than that the corresponding min-timer expires at time instant
n.eFirst + i .

tnow − a ≤ ntnow
.eLast (6.25)

. . . because either the node predecessor node is still valid at tnow , so that ntnow
.elast =

∞. Otherwise, if n.predec has terminated, the proposition follows from the fact
that a time-out request for ntnow

.eLast + a has been installed (5.47)(5.49), which has
obviously not yet expired, because n is still valid.

tnow − a ≤ tnow − i (6.26)

. . . because a ≥ i , according to the definition of i ,apk , which is checked by the
rewriting from S to S ′ statically, cf. the non-syntactic “where. . . ” condition in
table 4.1 and the informal description on page 18.
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Chapter 6. Proofs

6.3.3 Prime Nodes Representing Partial Interpretations
w.r.t. Top Level Chop Sequences

The lemma which is the final purpose of all demonstrations in this section 6.3 applies
to all LNodes which correspond to specification particles from a top level chop
sequence, i.e. from a linear specification which is directly derived from SpecUT, not
from a sub-expression of an AND/OR expression.

This lemma is . . .

∀ tnow : T, n : LNode
• isValid ntnow

=⇒ D[tstartSession ...tnow ] ∈ [[ SPath n ]]L
(6.27)

In the case of chop sequences containing Prime nodes only, i.e. in the case that
SpecUT does not contain AND/OR expressions, its derivation is possible by induction,
using the result of the preceding section :

(1)

The nodes corresponding to the first sub-expressions in every chop sequence
are created in the testing state before the start of the test session by the proce-
dure iInit()(5.8). For all these nodes the value of .predec is the pseudo-node n−1,
representing the condition “test session not yet started”.

The node n−1 is treated specially by the function evalNodes initial()(5.15), sim-
ulating a corresponding (pseudo-)observation function3 which changes to false at
time instant tstartSession .

So in this very first evaluation step only those nodes the corresponding ob-
servation function of which is true at tstartSession can make the transition from the
testing into the time-in state in the positive phase. All nodes which are still in the
testing state in the negative phase, because the observation function has not been
true, are deleted, because there predecessor terminates, cf. figure 4.3.

Therefore it holds for all of those nodes n which subsequently reach a valid
state, that . . .

∀ tnow : T • n.eFirst = ntnow
.eLast = tstartSession (6.28)

3The definition of observation functions in section 2.1 restricts their domain to the interval of
the test session, which is not the case with this theoretical “pseudo-” observation function.
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6.3.3 Prime Nodes Representing Partial Interpretations w.r.t. Top Level Chop
Sequences

W.r.t. the fundamental local node property of each Prime node (6.7) t0 and t2
calculate as follows:

t0 = latest(n.eFirst , tnow − a)
= latest(n.eLasttnow

, tnow − a) (6.28)

= ntnow
.eLast (6.25)

= tstartSession (6.28)

t2 = earliest(ntnow
.eLast , tnow − i)

= earliest(n.eFirst , tnow − i) (6.28)

= tstartSession (6.24)

(6.29)

. . . so that for all immediate successors of n−1, the leading nodes of top level chains,
formula (6.7) takes the form . . .

∀ tnow , t : T, n : Prime | isValid ntnow

∧ n.expHd = i ,apk

• tstartSession ≤ tstartSession

∧ tstartSession ≤ t ≤ tstartSession

⇐⇒
(

D[t ...tnow ] ∈ [[ i ,apk ]]L ∧ isValid (n.predec)tstartSession

)

(6.30)

. . . which can be generalized and simplified to . . .

∀ tnow , t : T, n : Prime | n.predec = n−1 ∧ isValid ntnow
∧ n.expHd = i ,apk

• t = tstartSession ⇐⇒ D[t ...tnow ] ∈ [[ i ,apk ]]L

(6.31)

Since for each very first node of a specification expression it holds that
n.expHd = SPath (n), the consequence can be written as . . .

∀ tnow , t : T, n : Prime | n.predec = n−1 ∧ isValid ntnow
∧ n.expHd = i ,apk

• t = tstartSession ⇐⇒ D[t ...tnow ] ∈ [[ SPath n ]]L

(6.32)

(2)

Let it be assumed that for the predecessor n.predec 6= n−1 of any node n it
holds that . . .

isValid(n.predec)tnow
=⇒ D[tstartSession ...tnow ] ∈ [[SPath (n.predec)]]L (6.33)
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Chapter 6. Proofs

Then (6.27) can be derived from (6.7) and (6.32) by the following induction:

( ∀ t : T, n : Prime • isValid (n.predec)t =⇒ D[tstartSession ...t ] ∈ [[SPath n.predec]]L)
∧ (isValid ntnow

)
(6.7)

∀ t1 | latest(n.eFirst , tnow − a) ≤ t1 ≤ earliest(n.eLast , tnow − i)

⇐⇒ ( D[t1...tnow ] ∈ [[i ,apk ]]
L

∧ isValid (n.predec)t1 )

∃ t2 • D[t2...tnow ] ∈ [[i ,apk ]]
L

∧ isValid (n.predec)t2

∃ t2 • D[t2...tnow ] ∈ [[i ,apk ]]
L

∧ D[tstartSess ...t2] ∈ [[SPath n.predec]]L

D[tstartSession ...tnow ] ∈ [[(SPath n.predec) ; n.expHd ]]L

D[tstartSession ...tnow ] ∈ [[SPath n]]L

(6.34)

6.3.4 Prime Nodes Representing Partial Interpretations

w.r.t. Sub-Expressions

In this section only one-level conjuction are considered, i.e. conjunctions of chop
sequences containing only i ,apk expressions. In a second step AND/OR expressions
will be embedded in these sequences recursively, cf. section 6.3.5.

Principally, all nodes n are connected to a predecessor node by n.predec in-
dependently from the hierarchical structure of conjunctions and disjunctions. Ad-
ditionally each node which represents a specification which is sub-expression of an
AND/OR expression refers by its attribute .livesIn to one certain OrGr-object, which
in turn refers by its attribute .tstPartOf to one certain ATst-node, cf. the informal
description in section 4.7.8.

Let nk be a non-top level node which is valid at tnow . Let n0 be its leading
node as defined in 4.7.8, i.e. the distinct node in (predec∗) (nk), which is the leftmost
node referring to the same OrGr-object as nk .

Then 〈n0, . . . , nk〉 is the node chain connecting n0 and nk by predec∼, and
SPath n0 ; nk ∈ LS ′ is the specification term resulting from the chop-
wise concatenation of the specification particles corresponding to these nodes, i.e.
n0 .expHd ; . . . ; nk .expHd .

Further Ix and Ax shall stand for the minimal and maximal duration require-
ments of nx .expHd = Ix ,Axp .

The being valid of a certain Prime node implies the existence of interpretations
of the complete trace data D w.r.t. a specification eC constructed by the chop-wise
concatenation of the specification particles corresponding to all predecessor nodes
starting with a successor of n−1, as demonstrated above, and formulated in (6.27).
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6.3.4 Prime Nodes Representing Partial Interpretations w.r.t. Sub-Expressions

This, naturally, implies the existence of some interpretations of some suffices
of D w.r.t. all suffices of the chop sequence eC . In the general case, the information
required for constructing these interpretations is not represented by node objects.

But in case of non-top level LNode objects the algorithm maintains four addi-
tional time-valued data fields, which allow to derive immediately informations from
any such node nk about the fulfillment of a suffix of the test data D w.r.t. the
sub-specification SPath n0 ; nk .

This can be demonstrated by an induction going backward in time from nk

to n0, where for each node nx of this chain the fundamental local interpretation of
each node (6.7) is instantiated for the predecessor node nx−1, by substituting for the
single value tnow the whole interval , in which nx−1 is known as having been valid.

For easier reading of the following derivation, note that each time valued vari-
able tx stands for the possible start time of a segment represented by nx , and tx+1 for
the possible end time. Thus tx+1 corresponds to tnow from (6.7), when this property
is “instantiated in the past”.
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∀ tnow , nk : Prime | isValid nk ,tnow
•

∀ tk | latest(nk .eFirst , tnow − Ak) ≤ tk ≤ earliest(nk ,tnow
.eLast , tnow − Ik)

⇐⇒ D[tk ...tnow ] ∈ [[Ik ,Akpk ]]
L

∧ isValid (nk .predec)
(6.7)

∀ tk−1 | latest(nk−1.eFirst , tk − Ak−1)
≤ tk−1 ≤ earliest(nk−1, tk .eLast , tk − Ik−1)

⇐⇒ D[tk−1...tk ] ∈ [[Ik−1 ,Ak−1pk−1]]
L

∧ isValid (nk−1 .predec)
(6.39)

∀ tk−1 | latest(nk−1.eFirst , tk − Ak−1)
≤ tk−1 ≤ earliest(nk−1,tnow

.eLast , tk − Ik−1)

⇐⇒ D[tk−1...tk ] ∈ [[Ik−1 ,Ak−1pk−1]]
L

∧ isValid (nk−1 .predec)
(substitute lower and up-
per bounds of tk and collect
consequences.)

∀ tk−1 | latest(nk−1.eFirst , latest(nk .eFirst , tnow − Ak) − Ak−1)
≤ tk−1

≤ earliest(nk−1,tnow
.eLast , earliest(nk ,tnow

.eLast , tnow − Ik) − Ik−1)

⇐⇒ D[tk−1...tk ] ∈ [[Ik−1,Ak−1pk−1]]
L ∧ D[tk ...tnow ] ∈ [[Ik ,Akpk ]]

L

∧ isValid (nk−1 .predec)
(apply distributivity and
associativity of min/max,
and join the consequences.)

∀ tk−1 | latest(nk−1.eFirst , nk .eFirst − Ak−1, tnow − (Ak−1 + Ak ) )
≤ tk−1

≤ earliest(nk−1,tnow
.eLast , nk ,tnow

.eLast − Ik−1, tnow − (Ik−1 + Ik) )

⇐⇒ D[tk−1...tnow ] ∈ [[Ik−1 ,Ak−1pk−1 ;
Ik ,Akpk ]]

L

∧ isValid (nk−1 .predec)

. . .
(repeat this derivation until n0 is reached.)

. . .

∀ t0 | latest( n0.eFirst ,
n1.eFirst − A0,
n2.eFirst − (A0 + A1),
. . . ,
nk .eFirst − (A0 + . . . + Ak−1),
tnow − (A0 + . . . + Ak))

≤ t0
≤ earliest( n0,tnow

.eLast ,
n1,tnow

.eLast − I0,
n2,tnow

.eLast − (I0 + I1),
. . . ,
nk ,tnow

.eLast − (I0 + . . . + Ik−1),
tnow − (I0 + . . . + Ik))

⇐⇒ D[t0...tnow ] ∈ [[SPath n0 ; nk ]]
L

∧ isValid (n0 .predec)

(6.35)

68 markuslepper.eu

 

http://markuslepper.eu
http://www.worldcat.org/search?q=


6.3.4 Prime Nodes Representing Partial Interpretations w.r.t. Sub-Expressions

The non-emptiness of all intervals given by the expressions “latest(. . .) ≤ t ≤
earliest(. . .)” is implied by the fact that all those expressions only comprehend (pos-
sibly infinitely many!) legal instantiations of (6.7), for which the non-emptiness has
been shown in the general case.

A central pre-requisite for an efficient implementation is the fact that we do
not need to know the “former” values of nx−1,tx .eLast , in spite of their appearance
when simply instantiating (6.7) at all former time instants tk , tk−1, . . ., as indicated
with the red box nk−1, tk .eLast , . . . in the first instantiation step above.

Instead, it is true for every node nx from 〈n0, . . . , nk−1〉 that we can always use
the current value nx ,tnow

.elast ! This follows from the definition of eLast and the
characteristics of its behaviour.

Three different cases have to be distinguished:

In the first case the predecessor of node nx had already left its valid state at the
former time tx . Since this can happen only once in its life-time, it follows that . . .

∀ n ∈ Prime | isValid ntnow
•

t ≤ tnow ∧ nt .eLast 6= ∞ =⇒ nt .eLast = ntnow
.eLast

(6.36)

In the second case nx .predec is has been valid at tx and still is at tnow . Then it
holds that

nx ,tx .eLast = ∞ = nx ,tnow
.eLast (6.37)

The third case is given by isValidtx (nx .predec) ∧ ¬ isValidtnow
(nx .predec). So

n.predec has left its valid state at some time instant tx ≤ tp ≤ tnow , and n.eLast has
been set to tp . So it follows that . . .

∀ nx : Prime, tnow , tx : T | isValidtx (nx .predec) ∧ ¬ isValidtnow
(nx .predec) •

ntnow
.eLast ≥ tx

(6.38)

In this third case, in spite of the values of .eLast being different at the two
different time instants, all expressions of kind “earliest(. . .)” in formula (6.35) yield
identical values in both cases :

∀ n ∈ Prime, t0, tnow : T, Ix : T
′ | t0 ≤ tnow ∧ Ix ≥ 0.0
∧ isValidt0 (n.predec) ∧ ¬ isValidtnow

(n.predec) •

nt0 .eLast = ∞

t0 < nt0 .eLast
∧ t0 ≤ ntnow

.eLast (6.38)

t0 − Ix < nt0 .eLast
∧ t0 − Ix ≤ ntnow

.eLast
earliest(nt0 .eLast , t0 − Ix ) = t0 − Ix

∧ earliest(ntnow
.eLast , t0 − Ix ) = t0 − Ix

earliest(nt0 .eLast , t0 − Ix ) = earliest(ntnow
.eLast , t0 − Ix)

(6.39)
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Chapter 6. Proofs

Reading this result with the substitutions nk−X/n0, Ik−X/I0, tk−X+1/t0 shows
the correctness of the simplification applied in each step of (6.35).

For the sake of efficient calculation, the algorithm maintains four attributes of
LNode objects which serve as cache variables. The first two of these do depend only
on the specification terms and thus can be assigned a value once, when creating the
new node object, cf. newNode()(5.35) and calcMin/MaxPreds()(5.36). These attributes
and their data type are . . .

• n.sumMinPreds : D sums up the minimal duration requirements of all pre-
decessor nodes down to and including the leading node of n.

• n.sumMaxPreds : D+ does the same for the maximal duration requirements.

Using the same index notation as in (6.35), this can informally be written as . . .

nk .sumMinPreds = I0 + I1 + . . . + Ik−1

nk .sumMaxPreds = A0 + A1 + . . . + Ak−1
(6.40)

Substituting these values into the result of (6.35), we get . . .

∀ t0 | latest( n0.eFirst ,
n1.eFirst − n1.sumMaxPreds,
n2.eFirst − n2.sumMaxPreds,
. . . ,
nk .eFirst − nk .sumMaxPreds,
tnow − Ak − nk .sumMaxPreds)

≤ t0
≤ earliest( n0,tnow

.eLast ,
n1,tnow

.eLast − n1.sumMinPreds,
n2,tnow

.eLast − n2.sumMinPreds,
. . . ,
nk ,tnow

.eLast − nk .sumMinPreds,
tnow − Ik − nk .sumMinPreds)

⇐⇒ D[t0...tnow ] ∈ [[SPath n0 ; nk ]]
L

∧ isValid (n0 .predec)

(6.41)

Since for each node nx with 0 ≤ x < k these calculations have only to be
done once, but nk may have arbitrarily many successor nodes, the expressions above
are again folded into the calculation of the values of two additional cache variables
seFirst and seLast , — read: “Sequence Entry First” and “Sequence Entry Last”,
— the definition of which can informally be described as . . .

n0.seFirst = n0.eFirst
nx .seFirst = latest(nx−1.seFirst , nx .eFirst − nx .sumMaxPreds)
n0,t .seLast = n0,t .eLast
nx ,t .seLast = earliest(nx−1,t .seLast , nx ,t .eLast − nx .sumMinPreds)

(6.42)
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6.3.5 Construction of ASol Nodes Representing the Solutions of Conjunctions

Therefore the result of (6.35) is further simplified to . . .

∀ t0 | latest( nk .seFirst , tnow − Ak − nk .sumMaxPreds)
≤ t0
≤ earliest( nk ,tnow

.seLast , tnow − Ik − nk .sumMinPreds)

⇐⇒ ( D[t0...tnow ] ∈ [[SPath n0 ; nk ]]
L

∧ isValid (n0 .predec) )

(6.43)

The value of .seFirst behaves like .eFirst , i.e. it does never change throughout
the life-time of a valid Node object. Therefore, the value of .seFirst can be calculated
once, in the same evaluation step as .eFirst , i.e. when the external predicate goes
true. This is done in the function RNode signalRaises()(5.20).

Contrarily, the value of nk ,t .eLast of a valid Prime-node will be changed from
∞ to the current time instant, as soon as nk .predec terminates. Therefore the value
of nk ,t .seLast can change arbitrarily often, potentially in all those time instants when
a value of nx ,t .eLast changes, with x ≤ k .

This is realized in the algorithm as follows:

Whenever a node n terminates, this event is signaled to all its successors nS

by applying to them the function RNode becomesFixed()(5.49).This function not only
assigns the current time to nS .eLast , but also calculates a new candidate value for
nS .seLast .

This value is passed to the function LNode SEL lowers()(5.51) which is called
on nS . This function checks if this candidate value is indeed a harder constraint, i.e.
an earlier value than the current nS .seLast . If so, this attribute is overwritten, and
the value is signaled to all those of the successors of nS which belong to the same
node chain4 by applying the function LNodeSet SEL lowers()(5.51) recursively.

6.3.5 Construction of ASol Nodes Representing the Solu-
tions of Conjunctions

.

The properties from (6.43) and (6.81) are now used to construct the semantics
of an ASol node, which represents the complete set of segments which all fulfill a
certain conjunction of sub-specifications.

As soon as some node n becomes valid which is a final node (i.e. a node
which represents a partial interpretation w.r.t. some linearization of a complete sub-
expressions of an AND/OR expression, as defined in section 4.7.8 above5) and iff all
other OrGr-objects (which belong to the same ATst-node as the OrGr containing n)
contain also at least one final node, then for all possible combinations of one final

4. . . and possibly to all those ASol-nodes which use n as a part of their represented solution,
see below in section 6.3.5.
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node from each OrGr, one new ASol-node N each is constructed, representing the
fulfillment of the conjunction of the sub-specifications represented by these nodes.

The schema definition corresponding to the ASol-nodes is given in for-
mula (5.6), and the function installSolution()(5.42) creates that new ASol object
N . All attribute values of N can be calculated in this function, and all of these,
except .aeLast and .seLast , will stay constant.6

N .solParts is set to the collection of references to those final nodes the combi-
nation of which caused the creation of N .

The first and last starting point of the segments represented by an ASol node N
are set to the latest and earliest values of all final nodes contained in N .solParts, and
the values N .minSubSum and N .maxSubSum cache the maximal value of all minimal
duration requirements and the minimal value of all maximal duration requirements
of all sub-expressions contained in N .solParts :

∀N : ASol, t : T | N .solParts = {m0, . . . ,mk} •
N .aeFirst = latest {m0.seFirst , . . . ,mk .seFirst}
N .aeLastt = earliest {m0.seLastt , . . . ,mk .seLastt}
N .minSubSum = max (|( m0.sumMinPreds + minDura(m0),

. . . ,mk .sumMinPreds + minDura(mk) )

N .maxSubSum = min (|( m0.sumMaxPreds + maxDura(m0),
. . . ,mk .sumMaxPreds + maxDura(mk) )

(6.44)

The value of N .aeLast is dynamic, because it depends on the dynamic values
of .seLast of all nodes from N .solParts, and the value of .seLast is dynamic, because
each ASol node is treated as any LNode w.r.t. the calculation of .seLast as described
above in section 6.3.4.

When trying to create an ASol node N at time instant tnow , the function
installSolution() additionally tests the conditions

N .minSubSum ≤ N .maxSubSum
N .aeFirst ≤ N .aeLasttnow

(6.45)

Therefore combinations of sub-expressions which are per se fulfilled, but which do
conflict in their timing or duration requirements will not yield an ASol-node.

5This fact is detected in the algorithm in chapter 5 using the special terminal symbol 44

appended to the end of each such sub-expression, cf. function termInst()(5.33), which calls
LNode endReached()(5.40) in the case that 44 is element of the set of subsequent expressions.

6Basically N .seLast and N .seFirst behave like the same attributes in a Prime node. This
section treats only one-level AND/OR expressions, and therefore ASol nodes are not yet part of node
chains which represent sub-expressions. The behaviour of N .seFirst and N .seLast is related to
such nested expressions, and is treated below in the dedicated section 6.3.7.
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6.3.5 Construction of ASol Nodes Representing the Solutions of Conjunctions

Corresponding to the definition in (6.6) on page 59 for Prime nodes, for ASol
nodes the following derived dynamic predicate is defined :

∀N : ASol,t : T •

isValid Nt
def
= (∀ n ∈ N .solParts • isValid nt)

∧ N .aeFirst + N .minSubSum ≤ t
∧ t ≤ Nt .aeLast + N .maxSubSum

(6.46)

The validity of this predicate is realized in the implementation by (a) installing
and modifying up to two timer requests for N , and (b) by two mechanisms which
signal to N all relevant changes in the state of any node in N .solParts.

(a)

Let tnow be the time instant when N is created.

If N .aefirst + N .minSubSum ≤ tnow holds, then the node is put directly into a
valid state.

Otherwise it is put into the time-in state, and a time-in request for the future
time instant N .aeFirst + N .minSubSum in initiated.

If both N .aeLast and N .maxSubSum are 6= ∞, a time-out request is initiated
for the time instant N .aeLast + N .maxSubSum.

(b)

Whenever an LNode n terminates, the function LNode terminates()(5.47) calls
itself recursively for all ASol nodes which use n as a part of their solution.

As described in the preceding section, the function LNode SEL lowers()(5.51)

is recursively called for possibly calculating a new and earlier value for n.seLast
whenever some transitive predecessor in the same node chain terminates.

If this function reaches a final node n, the function ASol subSEL lowers()(5.52)

is called for all ASol nodes which use n as a part of their solution. This possibly
updates the value .aeLast in these ASol nodes to a new and earlier value. The
currently pending time-out request has to be adjusted accordingly, which is discussed
in detail in section 6.3.5.1.

If LNode terminates() is called for N before the time-in request has expired, N
is simply discarded. Otherwise, the expiration of the time-in request lets N transit to
a valid state. This guarantees that isValid (Nt) =⇒ t ≥ N .aeFirst +N .minSubSum

The second transition of N is from the valid to the terminated state. This is per-
formed either when the time-out request expires, guaranteeing that isValid (Nt) =⇒
t ≤ Nt .aeLast + N .maxSubSum always holds, or when any of the nodes from
N .solParts terminates, signaled to N as described above and guaranteeing that
isValid (Nt) =⇒ ∀ n ∈ N .solParts • isValid(nt).

Any ASol-node which enters the valid state behaves like any Prime-node: The
set of subsequent expressions is calculated, and for each of its members one new
LNode is created in the testing state. This is realized by LNode becomesValid()(5.31)

being called for N in the same way as for any Prime node. This call is either per-
formed directly by installSolution(), or by the scheduling function execute min (5.19)

in case of a time-in request.
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The fundamental local property of each ASol-node, analog to (6.7) on page 59
for Prime-nodes, is given by the lemma . . .

∀ tnow , t : T ,N : ASol | isValid Ntnow

∧ t0 = latest(n.aeFirst , tnow − N .maxSubSum)
∧ t2 = earliest( (Ntnow

).aeLast , tnow − N .minSubSum)

• t0 ≤ t ≤ t2 ⇐⇒
(

D[t ...tnow ] ∈ [[expr N ]]L ∧ isValid (n.predec)t
)

∧ t0 ≤ t2

(6.47)

In this section this property can be demonstrated to hold for all ASol nodes
representing AND/OR expressions containing only Prime nodes, based on the results
of the preceding paragraph, which considered sub-expressions with the same restric-
tion.

Let for a certain N : ASol be N .solParts = {n0, . . . , nk}, and for each 0 ≤ x ≤ k
the node mx be the leading node of nx .

Then the expression from L S ′′ for which a segment of a partial interpretation
is represented by N is given by . . .

exprN = AND (SPath m0 ; n0, . . . , SPath mk ; nk) (6.48)

. . . and the corresponding semantics as . . .

[[ exprN ]]L =
⋂

〈 [[SPath m0 ; n0]]
L, . . . , [[SPath mk ; nk ]]

L 〉 (6.49)

Since each leading mx serves as the reference for calculating nx .seFirst/.seLast ,
and since for each n ∈ N .solparts it holds that n.predec = N .predec (5.42), the (=⇒)
statement contained in (6.47) follows from (6.43) by these derivations :
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∀ tnow : T ,N : ASol, n : LNode | n ∈ N .solParts ∧ n.expr = I ,Ap •
isValid Ntnow

isValid ntnow

∀ t0 | latest( nk .seFirst , tnow − (nk .sumMaxPreds + A))
≤ t0
≤ earliest( nk ,tnow

.seLast , tnow − (nk .sumMinPreds + I ))

⇐⇒ ( D[t0...tnow ] ∈ [[SPath n0 ; nk ]]
L

∧ isValid (n0 .predec) )
n.sumMaxPreds + A ≥ N .maxSubSum
n.sumMinPreds + I ≤ N .minSubSum

∀ t0 | latest( nk .seFirst , tnow − N .maxSubSum)
≤ t0
≤ earliest( nk ,tnow

.seLast , tnow − N .minSubSum)

=⇒ ( D[t0...tnow ] ∈ [[SPath n0 ; nk ]]
L

∧ isValid (n0 .predec) )
nk .seFirst ≤ N .aeFirst
nk ,tnow

.seLast ≥ Ntnow
.aeLast

∀ t0 | latest( N .aeFirst , tnow − N .maxSubSum)
≤ t0
≤ earliest( Ntnow

.aeLast , tnow − N .minSubSum)

=⇒ ( D[t0...tnow ] ∈ [[SPath n0 ; nk ]]
L

∧ isValid (n0 .predec) )
(6.50)

The (⇐=) statement contained in (6.47) can be shown be rewriting the (⇐=)-
part of (6.43) as follows:

∀ t0 | t0 < latest( nk .seFirst , tnow − (nk .sumMaxPreds + Ak))

=⇒ D[t0...tnow ] 6∈ [[SPath n0 ; nk ]]
L

∨ ¬ isValid (n0 .predec)

∀ t0 | earliest( nk ,tnow
.seLast , tnow − (nk .sumMinPreds + Ik)) < t0

=⇒ D[t0...tnow ] 6∈ [[SPath n0 ; nk ]]
L

∨ ¬ isValid (n0 .predec)

(6.51)

This proposition on the upper and lower limits of t0 can be demonstrated by
considering two different cases each.

For the lower limits these cases are . . .
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∀ tnow : T ,N : ASol •

tnow − N .maxSubSum ≤ N .aeFirst

∃ nk ∈ N .solParts | nk .seFirst = N .aeFirst ∧ maxDura(nk) = A
(6.51)

∀ t0 | t0 < latest( nk .seFirst , tnow − (nk .sumMaxPreds + Ak))

=⇒ D[t0...tnow ] 6∈ [[SPath n0 ; nk ]]
L

∨ ¬ isValid (n0 .predec)
tnow−(nk .sumMaxPreds+Ak) ≤
tnow − N .maxSubSum ≤
N .aeFirst = nk .seFirst

∀ t0 | t0 < nk .seFirst

=⇒ D[t0...tnow ] 6∈ [[SPath n0 ; nk ]]
L

∨ ¬ isValid (n0 .predec)

∀ t0 | t0 < N .aeFirst

=⇒ D[t0...tnow ] 6∈ [[expr N ]]L

∨ ¬ isValid (n0 .predec)

(6.52)

. . . and in the other case . . .

∀ tnow : T ,N : ASol •

N .aeFirst ≤ tnow − N .maxSubSum

∃ nk ∈ N .solParts | maxDura(nk) = A ∧ nk .sumMaxPreds + A = N .maxSubSum
(6.51)

∀ t0 | t0 < latest( nk .seFirst , tnow − (nk .sumMaxPreds + Ak))

=⇒ D[t0...tnow ] 6∈ [[SPath n0 ; nk ]]
L

∨ ¬ isValid (n0 .predec)
nk .seFirst ≤ N .aeFirst ≤
tnow − N .maxSubSum =
tnow − (nk .sumMaxPreds + Ak )

∀ t0 | t0 < tnow − (nk .sumMaxPreds + Ak)

=⇒ D[t0...tnow ] 6∈ [[SPath n0 ; nk ]]
L

∨ ¬ isValid (n0 .predec)

∀ t0 | t0 < tnow − N .maxSubSum

=⇒ D[t0...tnow ] 6∈ [[expr N ]]L

∨ ¬ isValid (n0 .predec)
(6.53)

These two results can be combined to . . .

∀ t0 | t0 < latest(tnow − N .maxSubSum,N .aeFirst)

=⇒ D[t0...tnow ] 6∈ [[expr N ]]L

∨ ¬ isValid (n0 .predec)
(6.54)

76 markuslepper.eu

 

http://markuslepper.eu
http://www.worldcat.org/search?q=


6.3.5 Construction of ASol Nodes Representing the Solutions of Conjunctions

For the upper limits given by Ntnow
.aeLast and tnow −N .minSubSum the same

proof pattern can be applied accordingly.

6.3.5.1 Proof of the Non-Emptiness of {t0 . . . t2}

To show the non-emptiness of the set of time instants at which the segments
represented by an ASol-node do start, we have to show that

∀ tnow : T,N : ASol •
isValid Ntnow

=⇒ latest(N .aeFirst , tnow − N .maxSubSum)
≤ earliest( Ntnow

.aeLast , tnow − N .minSubSum)
(6.55)

This can be demonstrated by considering all possible four combinations:

tnow − N .maxSubSum ≤ tnow − N .minSubSum (6.56)

. . . is checked once when constructing the ASol-node.

N .aeFirst ≤ tnow − N .minSubSum (6.57)

. . . is true because the node does not enter the valid state earlier than the time
instant N .aeFirst + N .minSubSum, when the corresponding min-timer expires.

More complex are the inequalities involving Ntnow
.eaLast , because this value

behaves dynamically: It always is set to the earliest() value of the .seLast-values of
all nodes contained in N .solParts, cf. (6.44) on page 72,

At the time of construction tc, it is checked once by the function
installSolution()(5.42) that . . .

N .aeFirst ≤ Ntc .aeLast (6.58)

Additionally, if N .maxSubSum < ∞, a max-timer request is installed, which
expires at Ntc .aeLast + N .maxSubSum, the expiration of which will terminate the
valid state. Therefore initially the validity of N implies . . .

tnow − N .maxSubSum ≤ Ntc .aeLast (6.59)

But since N .aeLast can lower arbitrarily often due to the further behaviour of
the final nodes from N .solParts, it has to be shown that (6.58) and (6.59) will hold
in all cases.

W.r.t. (6.59) :

Whenever at a time instant tnow the value n.seLast of some node contained
in N .solParts changes, i.e. lowers, this time-out request imposed on N has to be
adjusted accordingly, for guaranteeing (6.59) always to hold as long as isValid(N )
holds.
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This is realized by the function ASol subSEL lowers()(5.52), which is called
whenever a final node in N .solParts lowers its value of .seLast , and which sets the
new time-out value to at Ntnow

.aeLast + N .maxSubSum.

Rewriting (6.59) to tnow ≤ Ntc .aeLast+N .maxSubSum shows that this property
is equivalent to the fact that this timer update is feasible, i.e. that the new value
for the time-out expiration newTO does not lie “in the past of the execution”, i.e.
that newTO ≥ tnow holds.

This can be shown as follows:

Whenever a new value newAEL for N .eaLast is calculated7 at a time instant
tnow , this is always caused by a node m which is directly contained in one of the
sub-chains leading to a node from N .solParts, and which sets its own m.seLast
to this new value newAEL = tnow − δ. Then newTO is calculated as newTO =
newAEL + N .maxSubSum.

Since the recursive case, in which an ASol node is contained in a sub-sequence
of an ASol node, is not yet considered8, m is a Prime-node the predecessor of which
terminates. Then δ is equal to m.sumMinPreds + minDura(m), according to the
function LNode SEL lowers()(5.51).

Because of the initially tested invariants of the ASol node in (6.45), the defini-
tion of N .minSubSum (6.44) and because of (6.56) it holds that

N .minSubSum ≥ (m.sumMinPreds + minDura(m)) (6.44)

newAEL = tnow − (m.sumMinPreds + minDura(m)) (5.47)

newAEL ≥ tnow − N .minSubSum
N .minSubSum ≤ N .maxSubSum (6.45)

newAEL ≥ tnow − N .maxSubSum
newTO = newAEL + N .maxSubSum (5.52)

newTO ≥ tnow − N .maxSubSum + N .maxSubSum
newTO ≥ tnow

(6.60)

Therefore all new, lower time-out requests created at time instant tnow will
never refer to a time instant which has already passed, and, conversely, each time-
out request will guarantee that the interval N .aeFirst . . .N .aeLast will always be
non-empty w.r.t. (6.59).

W.r.t. condition (6.58) two cases have to be distinguished:

(1)

As long as N is in the time-in state, this condition can be violated by the
upcoming of the new, lower value newAEL < N .eaFirst . If so, the interval
N .aeFirst . . .N .aeLast is empty and N does not represent any solution of the con-
junction. Consequently, N is discarded totally from the collection of nodes in the
first alternative of ASol subSEL lowers()(5.52).

7Of course this newAEL has any influence on N .aeLast only if it is indeed a harder constraint,
i.e. earlier value than the current value Ntnow

.aeLast . Cf. the description of the propagation of
.seLast in section 4.7.9.4 on page 36.

8The proofs for this case will follow in section 6.3.7.1 on page 80.
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(2)

If the time-in request has expired, and isValid N holds, the newAEL cannot
violate the condition any more:

isValid N
N .aeFirst + N .minSubSum ≤ tnow (6.46)

N .aeFirst ≤ tnow − N .minSubSum

(m.sumMinPreds + minDura(m)) ≤ N .minSubSum
newAEL = tnow − (m.sumMinPreds + minDura(m)) ≥ tnow − N .minSubSum

N .aeFirst ≤ tnow − N .minSubSum ≤ newAEL
N .aeFirst ≤ Ntnow

.aeLast
(6.61)

6.3.6 Embedding AND/OR Expressions in the Top Level Chop
Sequence

Up to now, it has been shown that the every Prime nodes represents partial in-
terpretations of the trace’s prefix w.r.t. linear specifications which are sequences of
atomic predicates i ,apk .

The corresponding central semantic property is expressed by formula (6.27) in
section 6.3.3 on page 64.

(6.27) has been proved using only the local semantic properties of Prime nodes,
as given in formula (6.7) in section 6.3.2 on page 59, together with the special
treatment of n−1, as described in the induction in section 6.3.3 on page 64.

Further, the semantic properties of ASol nodes have been formulated by (6.47)
in the preceding section on page 74, and have been proven for all ASol nodes which
correspond to AND/OR expressions from L S ′, containing atomic predicates only.

Comparing (6.7) and (6.47), both formulæ can be considered to be identical
after applying the following renaming9 :

n ∈ Prime N ∈ ASol abstraction used
in the implementation

n.eFirst ≡ N .eaFirst
n.eLast ≡ N .eaLast
n.expHd = Ik ,Akpk ≡ expr N
Ik ≡ N .minSubSum = minDura()
Ak ≡ N .maxSubSum = maxDura()

(6.62)

9The auxiliary functions minDura() and maxDura() are defined in (5.22) and (5.37) and realize
the abstraction from the class of a node object. They are already used in the implementation,
namely for calcMin/maxPred()(5.36) when creating new node objects.
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Since (6.27), the central semantic property of node objects representing a top
level chop sequence, relies only on (6.7), it does also hold for specifications which
are chop sequences containing AND/OR expressions, as long as these, in turn, still
contain only chop sequences of atomic predicates.

6.3.7 Free Nesting of AND/OR Expressions

To allow an arbitrary nesting of AND/OR constructions, it has to be shown that the
semantic properties of ASol nodes as given by (6.47) also hold in case that ASol

nodes are contained in the node chains.

(6.47) depends mainly on (6.43) on page 71 in section 6.3.4, which describes
the semantics of an LNode as representing a interpretation suffix.

Additionally, (6.47) depends on (6.56) to (6.59).

(6.43) and (6.56) to (6.59) have been proved for chop sequences made of atomic
predicates, i.e. node chains consisting of Prime nodes. To allow an arbitrary nesting
of AND/OR constructions, it has to be demonstrated that they also hold for node
chains containing ASol nodes.

6.3.7.1 Proof of (6.56) to (6.59) w.r.t. ASol nodes

The first two of these propositions depend only on static properties of the ASol node
N , independent of its contents.

But (6.58) and (6.59) restrict the subsequent lowering of N .aeLast , caused by
a lowering of m.seLast of some final node from N .solParts. Since in this concern
any contained ASol node behaves differently than a Prime node, both properties
have to be demonstrated anew.

Let N ′ be a node contained in a node chain which ends at a final node contained
in N .solParts. Let N ′ lower its value of .aeLast at the time instant tnow to some
value newAEL′.

It has been shown in the derivation of (6.60), if N ′ is an ASol node containing
only Prime nodes, that it holds that . . .

newAEL′ ≥ tnow − N ′.minSubSum (6.63)

As defined in the algorithm’s function ASol subSEL lowers()(5.52), a lowering
of N ′.aeLast can cause a lowering of N ′.seLast to a new value newAEL, which is
propagated up to the final node, and possibly influences the value N .aeLast of the
containing ASol node :

newAEL = newAEL′ − N ′.sumMinPreds (6.64)

From these two properties it follows that

newAEL ≥ tnow − N ′.minSubSum − N ′.sumMinPreds (6.65)
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Since N ′.minSubSum and N ′.sumMinPreds are both summed up into the value
of N .minSubSum when creating N (6.44), it holds that . . .

N ′.minSubSum + N ′.sumMinPreds ≤ N .minSubSum (6.66)

. . . and consequently . . .

newAEL ≥ tnow − N .minSubSum (6.67)

Using (6.67) like (6.63) above, shows inductively that (6.67) holds for arbitrarily
nested AND/OR expressions.

Inserting (6.67) into (6.61) and (6.60) shows that that (6.58) and (6.59) also
hold in the arbitrarily nested case.

6.3.7.2 Proof of (6.43) w.r.t. ASol nodes

The derivation of (6.43) as performed in the induction in (6.35) on page 68 relies on
the local semantics of Prime nodes, as given by (6.7), and on (6.39).

In the case of node chains mixed from Prime and ASol nodes, (6.47) is equiv-
alent to (6.7) after applying the above-mentioned renaming.

The second pre-requisite, (6.39), is more critical.

It expresses the fact that in all cases occurring in the derivation (6.35) (using
the index notation defined therein) for each nx/Nx in the node chain and for each
t0 = tx+1 ≤ tnow it holds that . . .

earliest(nx ,t0 .eLast , t0 − Ix ) = earliest(nx ,tnow
.eLast , t0 − Ix )

. . . rewritten for ASol nodes as . . .
earliest(Nx ,t0 .aeLast , t0 − Nx .minSubSum) = earliest( Nx ,tnow

.aeLast ,
t0 − Nx .minSubSum)

(6.68)

This allows the above-mentioned and in detail discussed second transformation
step in (6.35), which replaces nk−1.eLasttk by nk−1.eLasttnow

and is of fundamental
importance for the efficiency of the algorithm.

This has shown for Prime nodes in (6.39), but has to be shown for ASol nodes
in a different way. E.g. (6.36) does not hold if n is not a Prime node but an ASol

node, since N .aeLast can lower its value arbitrarily often, — in contrast to n.eLast .

First of all, the previous section has shown (6.67) that whenever a new candidate
value newAELt for N .aeLast is calculated at some time instant t , it holds that . . .

newAELt ≥ t − N .minSubSum (6.69)

From this it follows that if a new candidate newAEL for N .eaLast is calcu-
lated at some time instant t2, and t2 is later than the current value Nt1 .aeLast +
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N .minSubSum = Nt1 .aeLast + N .minSubSum, this new candidate will never lead
to a further lowering of N .aelast :

∀ t1, t2 | t1 < t2 ∧ Nt1.aeLast + N .minSubSum ≤ t2
• t2 − N .minSubSum ≤ newSELt2

Nt1 .aeLast ≤ t2 − N .minSubSum ≤ newSELt2

Nt2 .aeLast = earliest(Nt1 .aeLast , newSELt2) = Nt1 .aeLast

(6.70)

As in (6.35), let nx−1 = N be some ASol node in the node chain 〈n0, . . . , nk〉.
Let Ntx .aeLast be the value of N .aeLast at the time instant tx , which is referred
to by the straight-forward instantiation of (6.7)/(6.47) for some time instant in the
past, and let Ntnow

.aeLast be the value used by the algorithm instead of Ntx .aeLast .

Additionally, let t be the latest time instant before tnow at which the value of
N .eaLast has changed.

Then three cases have to be distinguished :

∀N : ASol; tx , tnow : T | tx < t ≤ tnow •
(1)
Ntx .aeLast = ∞ ∧ Ntnow

.aeLast 6= ∞
tx < Ntx .aeLast ∧ Ntnow

.aeLast ≥ t − N .minSubSum
Ntnow

.aeLast > tx − N .minSubSum
earliest(tx − N .minSubSum,Ntx .eaLast) = tx − N .minSubSum

∧
earliest(tx − N .minSubSum,Ntnow

.eaLast) = tx − N .minSubSum
earliest(tx − N .minSubSum,Ntx .eaLast) = earliest(tx − N .minSubSum,Ntnow

.eaLast)

(6.71)

(2)
Ntx .aeLast = T ≤ tx ∧ tnow ≤ T + N .minSubSum

∧ Ntnow
.eaLast ≤ T

tx < tnow ≤ T + N .minSubSum ∧ tx ≤ tnow ≤ Nxtn .eaLast + N .minSubSum
tx − N .minSubSum < T ∧ tx − N .minSubSum ≤ Ntnow

.eaLast
earliest(tx − N .minSubSum,Ntx .eaLast) = tx − N .minSubSum

∧
earliest(tx − N .minSubSum,Ntnow

.eaLast) = tx − N .minSubSum
earliest(tx − N .minSubSum,Ntx .eaLast) = earliest(tx − N .minSubSum,Ntnow

.eaLast)
(6.72)

(3)
Ntx .aeLast ≤ tx ∧ Ntx .aeLast + N .minSubSum ≤ tnow (6.69)

Ntnow
.aelast = Ntx .aelast

earliest(tx − N .minSubSum,Ntx .eaLast) = earliest(tx − N .minSubSum,Ntnow
.eaLast)

(6.73)

Therefore the critical optimization step in the derivation in (6.35) can be taken
also for ASol nodes.
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6.4 Completeness

In the preceding section the fundamental property of each single node object has
been demonstrated: The existence of a valid node object n at some time instant
tnow indicates that there is an interpretation of the SUT’s trace data w.r.t. a certain
linear specification (= SPath n) derived from SpecUT.

To show the completeness of the algorithm means to show that, vice versa, each
partial interpretation causes the existence of at least one valid node object which
represents it.

This is not a local property of a single node, but a property of the total collec-
tion of nodes, as referred to by GState.nodes in chapter 5.

If the SUT’s trace data D fulfills SpecUT, then D fulfills some linear specifica-
tion SL derived from SpecUT, and there exists (at least) one interpretation i of D
w.r.t. SL. This follows from the respective definitions in section 4.6.

This interpretation splits D into k segments g1 . . . gk . Each segment gm extends
from tm to tm+1 and corresponds to an expression em , which is either of form Im ,Ampm

or of form AND{}. Additionally it holds that t1 = tstartSession and tk+1 = tendSession .

6.4.1 Proof without Conjunctions

Considering only the first case, in which all segments correspond to an expression
of form Im ,Ampm , it holds for each gm that the corresponding observation function
vm is true for the whole duration of gm .

W.r.t. g1, a node n1 which represents I1,A1p1 is created in the time-in state at
tstartSession , because its predecessor node is n−1, which is valid in the positive phase
of the very first evaluation step, and the observation function v1 changes to true in
this very step.

Since n−1 terminates at tstartSession , and duration(g1) ≤ A1, no time-out event
has occurred until t2. Since duration(g1) ≥ I1, the node has left the time-in state and
is in a valid state, at last in the positive phase of the evaluation step corresponding
to t2, or possibly earlier.

Therefore a valid node n1 exists at the end of g1 which represents a partial
interpretation consisting of this single segment.

For each subsequent segment gm of the interpretation i we assume inductively
that there exists a node nm−1 which is in the valid state in the positive phase of the
evaluation step corresponding to tm , i.e. at the end of the preceding segment.10

This node has entered the valid state at some time instant tp ≤ tm .

Since vm is true during the whole gm , and it is false before the very first
evaluation step, it must have changed to true at some time instant tv ≤ tm .

Therefore a node nm representing gm must have entered the time-in state at
the time instant tn = latest(tv , tp).

10If tm happens to correspond to an evaluation step, the node nm−1 may leave its valid state in
the negative phase of this evaluation step. This does not affect the following considerations.
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Since nm−1 is in a valid state at least until the positive phase of the evaluation
step at tm , and since duration(gm) ≤ Am , no time-out for nm has expired until the
end of gm .

Since further duration(gm) ≥ Im , and since vm is still true at the end of gm ,
the representing node nm has left the time-in state and is still in a valid state at the
end of gm .

Therefore at the end of each segment a valid node exists which represents the
partial specification (i.e. the prefix of i) up to and including this segment.

This is especially true for the last segment gk . Because SL is a linear specifica-
tion derived from the complete SpecUT, this fact is recognized by the algorithm by
44 being member of the set of subsequent expressions of nk . Therefore this node
is not only valid, but also contained in finalNodes(GState.top) and a pass verdict
is generated when calling iFinalize().11

6.4.2 Proof including Conjunctions

Let the expression corresponding to gm be of form AND{α1, . . . , αr}. Then the exis-
tence of the interpretation i of the whole trace D implies the existence of interpre-
tations i1, . . . , ir of gm .

The segment gm is the sub-trace D[tm ...tm+1].

Therefore each concatenation jx = 〈t1, . . . , tm−1〉a ix is a partial interpretation
of D[ttstartSession

...tm+1].

If none of the α1, . . . , αr does contain an AND expression, it follows from the
result of the preceding paragraph that at the time instant tm+1 for each such αx

there exists a node mx in the valid state representing jx .

One of these nodes has entered the valid state as the last, and in this very same
evaluation step an ASol node a has been created.

Since every mx represents, among others, the partial interpretation jx , and
mx .seFirst and mx .seLast reflect the possible start times of the segments represented
by the leading node of mx , it holds that for all mx that mx .seFirst ≤ tm ≤ mx .seLast .

Since the corresponding values of a are the latest and earliest of these values, it
holds that . . .

a.aeFirst ≤ tm ≤ a.aeLast (6.74)

Let Ix/Ax be the value yielded when summing up the minimal/maximal dura-
tion requirements imposed on the specifications contained in αx . Let a.minSubSum
be equal to the largest of all Ix , and a.maxSubSum be equal to the smallest of all
Ax .

Since the segment gm fulfills all αx , it follows that . . .

a.minSubSum ≤ duration(gb) = tm+1 − tm ≤ maxSubSum (6.75)

11If the last specification particle is of the form Ik ,Ak p0, i.e. it represents an ANY expression from
LS , and the maximal duration of the test session is known in advance, or Ak = ∞, the pass

verdict may have been returned already by a preceding evaluation step, as an “early verdict”.
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Any time-in request imposed on a will expire at a.seFirst +a.minSubSum. For
this value it holds that . . .

a.aeFirst ≤ tm (6.74)

a.minSubSum ≤ tm+1 − tm (6.75)

a.seFirst + a.minSubSum ≤ tm+1

(6.76)

Any time-out request imposed on a will expire at a.seLast + a.maxSubSum.
For this value it holds that . . .

tm ≤ a.aeLast (6.74)

tm+1 − tm ≤ a.maxSubSum (6.75)

tm+1 ≤ a.aeLast + a.maxSubSum

(6.77)

From (6.76) it follows that at the time instant tm+1 the min-timer for a has
expired, causing the transition of a from the time-in to the valid state.

From (6.77) it follows that the max-timer has not expired, not causing a tran-
sition from the valid to the terminated state.

Since additionally all nodes mx ∈ a.solParts are still valid at tm+1
12, the ASol

node a is at the end of gm in a valid state, representing the complete partial inter-
pretation up to gm .

So the requirement that none of the α1, . . . , αr may contain an AND expression
can be dropped by induction, and the same results as in the preceding section hold
for arbitrarily nested interpretations.

12At least in the positive phase of a possibly happening evaluation step, which is sufficient.
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Chapter 6. Proofs

6.5 Correctness and Completeness of Final and

Early Verdicts

6.5.1 Formal Semantics of Verdict Values

Let verdict (s : L S ′,D : R+, t : T) : Verdicts be the verdict value delivered by
the algorithm at the time instant t , while matching the trace data D w.r.t. the
specification SpecUT .

The semantics of the verdict value have been described informally in sec-
tion 3.2 : The early verdict pass means, that all possible continuations of the
known prefix of the test data will fulfill the specification; the early verdict fail

means, that no possible continuation of the known prefix of the test data will fulfill
the specification:

This can be formalized using the auxiliary definitions from section 3.3 as13 . . .

t < tendSession •

verdict(s,D[tstartSession ...t ], t) = pass =⇒ ∀D ′ • D[tstartSession ...t ]
a D ′ ∈ [[SpecUT ]]L

verdict(s,D[tstartSession ...t ], t) = fail =⇒ ∀D ′′ • D[tstartSession ...t ]
a D ′′ 6∈ [[SpecUT ]]L

(6.78)

Note that the implication arrows are not invertible: There are rare cases of a
trace definitely fulfilling or failing a specification, which are not recognized imme-
diately by the algorithm. In these cases the verdict inconc is delivered, in spite of
one of the consequences in formula (6.78) is already true.

The optimal real-time property of the algorithm would imply that, as long as
inconc is delivered, the cases of passing and failure are indeed both still possible:

t < tendSession •

verdict(s,D[tstartSession ...t ], t) = inconc =⇒ ∃D ′ • D[tstartSession ...t ]
a D ′ ∈ [[SpecUT ]]L

∧ ∃D ′′ • D[tstartSession ...t ]
a D ′′ 6∈ [[SpecUT ]]L

(6.79)

This property holds for most cases of specifications, but not in general. The
verdict inconc can also indicate that the algorithm is just not yet able do decide.
This case is discussed in section 6.5.3 below.

The final verdict, which can only take the values pass and fail, is defined
by . . .

verdict(s,D[tstartSession ...tendSession ], tendSession) = pass ⇐⇒ D ∈ [[SpecUT ]]L

(6.80)

The following section demonstrates that the properties (6.78) and (6.80) hold.

13Of course D ′ has to be “long enough”, so that the concatenation D[tstartSession ...t]
a D ′ yields a

complete (finite or infinite) system trace. This trivial requirement has not been included in the
formalization for the sake of readability.
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6.5.2 Correctness and Completeness of Verdicts

The final verdict is derived from the state of the top level OrGr object after a test
session (of finite duration) has ended at the time instant tendSession .

For this purpose the function iFinalize()(5.10) calls execute minMax ()(5.18) for
a last time. This function executes all timer expirations which are still pending
earlier than tendSession , and all time-in requests which expire exactly at tendSession .
Consequently, if an evaluation step coincides with tendSession , its positive phase is
still executed.

Changes of observation functions must not be regarded in this final evaluation
step, because their newly take values would correspond to some future time interval
(cf. section 4.7.7), which is not longer a sub-interval of the test session.

If after this a final node, i.e. a node representing a partial interpretation which
corresponds to a the complete SpecUT, is contained in GState.top, then it follows
from (6.27) that the complete trace fulfills a linear specification derived from Spe-
cUT. Therefore it fulfills SpecUT, and pass verdict must be delivered as the final
verdict.

Contrarily, the fulfillment of SpecUT by D always implies the existence of an
interpretation of D w.r.t. at least one linear specification derivable from SpecUT.
Since this implies the existence of a valid node, as shown in 6.4, a fail verdict must
be delivered if no such node exists.

This is exactly what function deriveVerdict final()(5.12) does.

The calculation of early verdicts by the function deriveVerdict()(5.11) antici-
pates this outcome of the final verict :

If during the execution no single node exists in GState.top, a top level final valid
node needed for a final pass verdict can nevermore be created, since the creation of
a node requires the existence of another valid node as its predecessor, cf. figure 4.3.

So whenever GState.top becomes empty because of the deletion of the last
node contained therein, an early fail verdict is returned by iNotify().(5.9)(5.11), cf.
the description in section 4.7.11.

Contrarily, whenever a final valid14 Prime node exists in GState.top which (1)
corresponds to the observation function v0 (which is always true), and (2) the time-
out expiration of which is known to happen after the end of the test session, then an
early verdict of pass is delivered by iNotify(), because this node will survive until
the very last evaluation step, and thus would in all cases cause a final passverdict.

14This mechanism could be easily extended to treat final nodes p0 in the time-in state as if they
were in the valid state, if the time-in request is known to expire before tendSession . This is not done
in the current implementation for technical reasons.
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Chapter 6. Proofs

6.5.3 Possible Early Verdicts not Recognized by the Algo-
rithm

In the current version of the algorithm, the duration requirements imposed on an ex-
pression which is one of the linearizations of a chop sequence containing disjunctions
is calculated dynamically(5.42) .

Consider the following specification, given in front-end notation :

α = OR {MIN 1 p0, MIN 2 p1 } ; OR {MIN 4 p2, MIN 8 p2 }

The different combinations which produce linear specifications and can appear
in partial interpretations will have four different minimal duration requirements,
symbolically written as . . .

OR{MIN 5 α1, MIN 6 α2, MIN 9 α3, MIN 10 α4 }

Now consider a conjunction like . . .

β = AND {α, MAX 9 p10 }

In the context of β a final node n4 representing a partial interpretation w.r.t.
the variant α4 can obviously never be used to create an ASol node, because its
duration requirement conflicts with the only specification contained in a parallel
OrGr.

Therefore, as soon as the OrGr representing α in the context of β only contains
node objects which lead to a final node of type n4, the ATst node representing β
could be discarded, which under appropriate circumstances could recursively lead
to an early fail verdict.

But this type of failing a sub-specification is not recognized by the algorithm in
the “early” way, — the duration requirements of parallel final nodes are compared
not before the algorithm tries to combine them for creating a new ASol node, and
even then the general impossibility to find any combination at all due to dynamic
duratio requirements, is not recognized.

The possible general solution is to re-write the specification expression accord-
ingly in the preparatory step which translates from L S to L S ′. This has been
refrained from in the current implementation of the tool because of combinatorial
explosion : the duration requirements given above in the definition of α can be
read as just symbolic representations of duration requirements which are in turn
dynamically defined by arbitrarily deep nested AND/OR expressions.

Nevertheless, if urgently required by an industrial application context of the
tool, the performance of the algorithm could be improved by heuristic methods for
detecting at least some of these cases at run-time.
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6.6 Termination

Each single evaluation step of the kernel algorithm terminates. This follows from the
termination of its positive and its negative phase, which can be shown separately:

• At the beginning of each system run there exists one single (pseudo-)node n−1.
• Each event in the positive phase of an evaluation step, i.e. the expiration of a

min-timer or the becoming-true of an observation function, causes — beside
the change of the status of one or more node-objects — the creation of new
nodes in the testing state.
The number of the newly created nodes nodes related to a certain, currently
valid node n as their predecessor, is limited by the cardinality of the set of sub-
sequent expressions of n, as defined in section 4.7.5. Since all these expressions
except REPstα are finite, this cardinality is finite, too.
Additionally, all expressions of type REPstα can lead to new nodes maximally
once in each evaluation step for a certain node serving as predecessor, since the
algorithm includes active live-lock prevention(5.33). Therefore their installation
does also cause only a finite set of new node objects.

• A certain node n entering its valid state may lead to the creation of new
ASol-nodes, if n is a final node as defined in section 4.7.8.
These newly created nodes are one ASol node for each possible combination
of final nodes, one from each OrGr which represents a sub-expressions of the
same AND expression in which the specification particle of n is contained.
Since AND-expressions in LS are finite, the number of newly created ASol node
objects is finite, too.

So in each positive phase the set of nodes grows only by a final number.

In the negative phase of each evaluation step the expirations of max-timers
and the reaction to the becoming-false of observation functions do happen. These
reactions can only decrease the number of nodes, which is a finite process, too.

Therefore each single evaluation step terminates. Consequently each call to an
interface function of the kernel algorithm terminates.

6.7 Nodes in the Terminated State may be

Deleted !

In the context of the propagation of information from a terminating nodes to all of
its successors, as described at the end of section 6.3.4, it is of central importance
for the efficiency of the algorithm that as soon as a node m goes to the terminated
state, no further information on the further behaviour of its predecessors will be
subsequently relevant for the semantics of any of its successors.

In other words: no communication between nodes is needed which “crosses”
any node m which is in the terminated state. This allows in the implementation
to simply “mfree()” the node m, thereby forgetting all structural information not
only about m, but also about all of its predecessors.
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Since the recursive calls of LNode SEL lowers()(5.51) and
ASol subSEL lowers()(5.52) are the only event which is propagated forward
through an existing tree of nodes, this can be shown as follows:

Let n0 be the leading node of m and nk be an immediate successor of m =
nk−1 = nk .predec in the same node chain.

As soon as nk−1 enters the terminated state at time instant tk , the value
of nk ,tk .eLast is set to tk , and nk ,tk .seLast is set to T = earliest(nk ,tk .eLast −
nk .sumMinPreds, nk−1,tk .seLast), as defined by the parameter passed from
RNode becomesFixed()(5.49) when calling LNode SEL lowers()(5.51).

The only reason for nk .seLast to be lowered further would be a lowering at some
later time instant tx ≥ tk of some nx .seLast with nx being a transitive predecessor
of nk in the same node chain.

This could have two different reasons:

Either nx is a Prime node the predecessor of which terminates. In this case
nx .seLast is set to tx − nx .subMinPreds.

But in this case it holds that nx .sumMinPreds ≤ nk .sumMinPreds, so that
tx − (nx .sumMinPreds) ≥ tk − (nk .sumMinPreds), so that the further lowering of
nx .seLast does not cause a change of nk .seLast , i.e. the value .seLast of the immediate
successor of the terminated node m, and consequently of none of its further transitive
successors.

In the other case nx is an ASol node, lowering its .aeLast to a value newAELx ,
because of the lowering of .seLast of some nS ∈ nx .solParts.

In this case it holds that

newAELx ≥ tx − nx .minSubSum (6.67)

newAELx − nx .sumMinPreds ≥ tx − nx .minSubSum − nx .sumMinPreds
nk .sumMinPreds ≥ nx .minSubSum + nx .sumMinPreds (6.44)

newAELx − nx .sumMinPreds ≥ tx − nk .sumMinPreds
tx ≥ tk
newAELx − nx .sumMinPreds ≥ tk − nk .sumMinPreds

(6.81)
So this event neither has any effect on nk .seLast , and all nodes in the terminated
state can be discarded completely.
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Chapter 7

Related Work

The areas of research and development where to find related work are those of
duration calculus, temporal logics and constraint resolution.

The duration calculus (DC, cf. [3]) is the appropriate theoretical framework,
into which the algorithm presented herein could be embedded. The basic setting
is identical to fundament of the semantics of our specification language: the DC
is a logic, the models of which are collections of functions from time to the set of
Boolean values.

The full-scale DC turned soon out to be undecidable in the sense of mathe-
matical logic [2]. Several sub-sets have been defined, subjected to mathematical
research, and employed in model checking and theorem proofing [1].

Works towards execution are rare [7], [4]. Interestingly, the author of [7] also
stresses that the finite variability of the input data is the key pre-requisite for exe-
cutability, cf. page 4 above.

A small sub-set of DC could have been used as a frame-work for the formulation
of the properties and proofs in this work. Due to significant formal over-head and
only small benefits this has been refrained from.

Theories and tools from the different varieties of temporal logics (TL, cf. [11],
TLA [9], ITL [15], TRIO [8] etc.) are a broad field of academic research, and partly
already used in the industrial context, e.g. in circuit design and verification.

The first major difference between our approach and all approaches from this
field (except [8]) is, that durations are not first order residents, but have to be
modeled by a certain number of single, subsequent and identically defined “states”.
This does not only require a preparatory analysis on the bandwidth of the data,
for defining a mapping from real-time intervals to these states. It also leads to an
explosion of states if applied to multiple-clock data, because the real-time distance
represented by a single state must correspond to the greatest common divider of the
distances of all possible critical time instances.

Just contrarily, our approach can be applied immediately to arbitrarily defined
domains representing time, including those with a dense structure. The imple-
mentation is limited only technically, but not semantically, by the precision of the
employed infra-structure.
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The second major difference lies in the concrete technologies of application and
implementation:

On the one hand, TL formula are fundamental to the various techniques of
model checking [6], and are subject to theorem proving [10], with all the well-known
restrictions to these technologies.

On the other hand, there are several activities of genuine and real-time capable
TL tool construction [14], [5], [17]. The general strategy in this area is to derive an
automaton, which is able to monitor a data trace using constant space and time.
This is not feasible for dense time domains, as in our case and in the case of [8].
Therefore, in the algorithm presented herein, an equivalent to this automaton exists
only virtually, and is extended and dismantled dynamically on demand.

Significant similarity with our approach can be found in [16]. This recent work
presents a method for generating an automaton which matches a sequence of real-
time events against a regular expression.

All these tools are superior to our approach w.r.t. the constant space and time
property, and because TL supports negation, which cannot be integrated in our
specification language as a free constructor. They are inferior because they cannot
deal naturally with durations.

From the viewpoint of constraint resolution (CR), our approach could be
seen as a very specialized form of incremental CR.

The arithmetic components of the specifications processed by our algorithm
are only very primitive linear constraints, so that this work is not a contribution to
CR in the narrow sense.

The complications come from the execution context: Several initially inde-
pendent constraints are processed in parallel. The detection of a certain solution
(i.e. “becoming valid of a node object”) leads to decisions which are determined by
Boolean logic. These decisions, in turn, lead to a dynamic creation of new constraints
by combining data from different solutions.

The severe problems involved in incremental CR in the general case do not
apply to our algorithm: All decisions concerning the solution tactics are uniquely
determined by the sequential structure of the SpecUT and the observed behaviour
of the SUT.

Since no direct predecessor has been found published, the author is currently
(November 2003) applying for a European patent on the algorithm presented herein.
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S Front-end specification language.
S ′ Middle-end language. Sentences from S ′ serve as input to the kernel

algorithm.
S ′′ Back-end language. Sentences from S ′′ describe prefix of a partial

interpretation which has been accepted by a valid node.
L s The language generated by a non-terminal s, i.e. the collection of

final sentences derivable from s.
a,ipk , ;, AND,
OR, OPT, REP,
REPst, MIN, MAX Operators of S and S ′.
44 Reserved terminal symbol from S ′, used for detecting that a sub-

expression of an AND/OR expression is completely fulfilled.

R+ The set of all non-empty traces w.r.t. a certain collection of atomic
predicates.

R The set R, plus additionally the empty trace.
a Concatenation function for traces of type R×R→R.
a Concatenation of interpretations of type seq T × seq T → seq T.

[[e]]L A function from L S . . .L S ′′ into set ofR, giving the set of all
traces which fulfill the specification expression e.

D The trace data as produced by an SUT and the adaptive layer
during one certain session.

D[t1...t2] The sub-trace of D extending from t1 up to t2.
pk Atomic predicate: a specification expression which expresses that

the corresponding observation function vk stays continuously true.
i ,apk Specification expression from the middle-end language S ′. It cor-

responds to the front-end notation MIN i MAXa p, and is fulfilled by
all sub-traces which fulfill pk and have a duration d which fulfills
i ≤ d ≤ a.

vk The observation function indicated by the predicates pk and i ,apk .
f (|σ|) The map operator. f (|σ|) is the collection of results yielded by

applying the function f to each member of the collection σ.
µ σ The µ operator selects the one and only member of the collection

σ, iff this is of cardinality one(1). Otherwise it is undefined.
r∼ The inverse of the relation r .
dom f /ran f Domain and range of a function or relation.
lubσ/glbσ Least Upper Bound / Greatest Lower Bound of a collection of val-

ues, on which an order is defined.
latest(σ)/earliest(σ) Functions delivering the minimal/maximal value contained in a col-

lection σ of time instance values.
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