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ABSTRACT

This paper investigates the use of staged meta-programming tech-
niques for the transparent acceleration of embedded domain-specific
languages on the Java platform. LLJava-live, the staged API of
the low-level JVM language LLJava, can be used to complement an
interpreted EDSL with orthogonal and extensible compilation facil-
ities. Compiled JVM bytecode becomes available immediately as an
extension of the running host program. The approach is illustrated
with a didactic structured imperative programming language.
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1 INTRODUCTION

Embedded domain-specific languages (EDSLs) can greatly enhance
the expressivity of a general-purpose programming language and
platform. [8] Like all languages, EDSLs can be either interpreted
or compiled. The technique of staged meta-programming allows
constructing a compiler from an interpreter in a rational, systematic
and efficient way. The Java language, unlike typical host languages
for stagedmeta-programming, does not have a homoiconic notation
of code-as-data. We have equipped the low-level JVM language
LLJava with a staged meta-programming frontend API, LLJava-
live. This paper illustrates and evaluates the style of EDSL compiler
construction enabled by that approach by application to a didactic
but nontrivial embedded programming language.
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The outline of the paper is as follows: the remainder of this sec-
tion reviews the involved technologies and paradigms. In the main
part, section 2 introduces the example language Whilst. Sections 3
and 4 discuss the interpreter and its metamorphosis into a compiler,
respectively. In the conclusion part, the following sections discuss
language extensibility and the empirical evaluation of compilation,
and wrap up the lessons learned.

The reader is assumed to be reasonably familiar with both the
Java language and its execution environment, the Java Virtual
Machine (JVM).

The main contributions of the present paper are:
• On the didactical side, the design of the extensible imperative
programming language Whilst as a showcase for EDSL
operationalization, and by means of that example,

• on the methodological side, the characterization of the par-
ticular and novel style of staged meta-programming enabled
by the LLJava-live API, which we name heteroiconic staged
meta-programming.

1.1 Meta-Programming

Meta-programming as a discipline is concerned with the design
and construction of software that operates on other software as
data, the former being called the meta-programs and the latter the
object programs, respectively. Classical examples for meta-programs
are of course found in the area of programming tools, namely
interpreters (as semi-meta-programming, where objects programs
serve as input only), or assemblers, compilers and linkers (as full
meta-programming, where object programs are also output, and
thus give rise to the term object code).

1.1.1 Staged Meta-Programming. A meta-programming approach
is called staged, if it is integrated tightly enough into the execution
model of a programming language, such that the produced object
programs can be accessed as code as well as data [18]. Such object
programs can extend the codebase of the running meta-program,
and be run as subsequent stages of program evolution.

The expressive power of staged meta-programming is particu-
larly enhanced by the fact that object programs-as-data may ref-
erence other data of the running meta-program directly, a feature
known as cross-stage persistence [18]. This is a marked contrast
to classical meta-programming where, e.g., the data in internal
memory of a compiler is not shared by the compiled application
program.

1.1.2 Homoiconic Meta-Programming. Many popular approaches
to meta-programming have the intriguing property that meta-
program and object program share the same notation. Such a no-
tation is called homoiconic [10]. Obviously, if notation applies to
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both levels, the boundaries must be marked explicitly, which dis-
tinguishes this style of meta-programming from implicitly leveled
styles, e.g., automatic partial evaluation [9].

At the very least, a homoiconic meta-programming notation
requires two operators to switch from meta to object and vice versa.
Staged variants are distinguished by a third operator to execute an
object program. The former two occur in various typographical vari-
ants throughout history, e.g., ‘ and , in Lisp quasiquotation [1], <_>
and ~ in MetaML [18], or ’’’_’’’ and «_» in Xtend templates [5].
(Apparently there is an evolutionary trend to become fancier with
time.)

1.1.3 Homoiconic Staged Meta-Programming and Compilation. The
most evidently useful application of staged meta-programming is
runtime program specialization, where the inputs of a subprogram
differ in binding time: Some of these may be more static, i.e., avail-
able earlier in the course of the program run, or changing values
less frequently, than others. A first stage can take advantage of the
contained information, and arrange the code fragments that depend
on the more variable inputs accordingly. Obviously the invested
effort pays off only if the specialized variant is both more efficient
in fact, and used often enough to amortize.

Such techniques have been well studied as optimizations in in-
terpreters and compilers [9]. For example, consider loop unrolling,
where a loop with dynamically conditional control flow can be
turned into a flat sequence of copies of the loop body, if the number
of iterations is determined already. In the context of staged-meta
programming, this involves concatenating object-level copies of
the loop body, driven by a meta-level counting loop.

The connection between monolithic versus staged programs on
the one hand, and interpretation versus compilation on the other,
goes deeper than that, however. A canonical textbook exercise in
staged meta-programming states simply:

“Define a language. Write an interpreter for the lan-
guage. Stage the interpreter to construct a compiler.” [17]

This piece of advice shall be followed in the main part of the present
paper, even though some part of the magic hinges on homoiconicity,
and is hence lost in translation to our deviant approach.

1.2 The Java Platform and Tools

The Java platform is in principle well-equipped for staged meta-
programming, by virtue of its class loader facility that turns byte
sequences, in precisely specified form, into live classes that seam-
lessly extend the codebase of the running program. [11]

1.2.1 Meta-Programming Frameworks. There are so many frame-
works and tools for meta-programming on the Java platform that
a survey is out of scope here. See [19] and [11] for introductions
from the compile and runtime perspective, repectively. Only two
relevant approaches and their most popular instances should be
mentioned.

On the one hand, there are JVM bytecode construction and ma-
nipulation libraries, such as BCEL [2] and ASM [3, 13]. Their ap-
proach can be characterized as thoroughly machine-centric: the
content of the JVM class file format [12, Ch. 4] is modeled directly
with little abstraction.

On the other hand, there are comprehensive DSL construction
kits, such as Xtext/Xtend [5, 6]. They focus on stand-alone rather
than embedded DSLs, and provide tool support for all phases of
language processing: syntax/parsing, abstract syntax tree (AST)
models, analysis, interpretation, compilation to Java or other target
formats.

1.2.2 Where is my Homoiconic Java? Sadly, the Java language is
fundamentally ill-equipped for truly integrated homoiconic ap-
proaches to meta-programming [24], for various reasons:

Firstly, the provided means for code reification, such as lambda
expressions and and anonymous inner classes, are hampered by non-
orthogonal constraints (such as shadowed variables and checked
exceptions) and complex implementation details (such as name
mangling and the infamous invokevirtual instruction); they are far
from being simple concepts of the underlying JVM.

Secondly, the language has rather poor compositional structure:
whereas, in a typical functional language, nearly every entity of
interest is an expression and thus a first-class citizen, Java program
fragments at a granularity that would be useful for staged meta-
programming do not have an independent existence of their own;
everything is tied to whole classes.

Last but not least, the actual target for staged meta-programming
on the Java platform is not the source language, but the JVM byte-
code format, which differs in ways that are too substantial to be
ignored, and likely to increase with the continuing evolution of
both (Consider the many pitfalls and shortcomings of the Java re-
flection API, and the concept of bridge methods as cases in point.)
In the (not unlikely) case that an EDSL’s execution model differs
from that of its host language Java, low-level control over JVM
features can be a valuable asset for compilation.

None of the existing language objects models and bytecode li-
braries seems ready to address the above issues systematically, let
alone effectively. Thus it appears a worthwhile experiment to de-
viate from the goal of homoiconic staged meta-programming on
the platform, and turn the vice of diverging formats and semantics
into the virtue of heteroiconic staged meta-programming.

1.2.3 The LLJava Language. LLJava [21] is a low-level class-struc-
tured, stack-oriented programming language for the JVM. It has
both a textual syntax and a public abstract syntax model, for manual
and meta-programming, respectively. LLJava does neither aspire
to be a full high-level application programming language, nor to
map all technical details of the underlying JVM directly. Instead,
the design aims at a sweet spot between user and machine ori-
entation, as an intermediate format for JVM-related compilation,
experimentation, reasoning and teaching.

LLJava abstracts systematically from machine-centric accidental
details of the bytecode format that can be inferred by a compiler
pass. For instance, addition instructions with distinct operand types
such as iadd and fadd are unified into a single add instruction, and
distinct constant loading instructions such as bipush, dconst_1 and
ldc are unified into a single load operation.

Tabular sections, such as the constant pool, StackMapTable at-
tributes or exception handlers, and mangling problems, such as
method descriptor syntax, are managed automatically. Conversely,
the essential properties of the JVM execution model, such as the
operand stack, are represented explicitly and faithfully.
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The LLJava backend is small and fast, and does not require exter-
nal resources. Thus it supports the efficient embedded generation
of byte code, not only for offline use, but also for online loading in
the running application. (See section 6 for corroborating data.)

1.2.4 The LLJava-Live API. LLJava-live is an experimental API
in Builder pattern style for the LLJava abstract syntax model and
backend. It is geared towards simple compositional code generation,
and immediate loading and instantiation of generated classes.

Bytecode is constructed incrementally by invoking API methods
that add data to the current context, such as fields to the current
class or instructions to the current method body, or navigate be-
tween contexts, similar to the usage of ASM.

LLJava-live provides a unified view on variables that subsumes
locals, instance fields and static fields, and implicitly selects the
appropriate instruction sets: load/store, getfield/putfield, etc. Lo-
cal variables and code labels are referenced by symbolic handles,
their numeric allocation is automatic. For compositional code with
complex data flow, LLJava-live has a hierarchical structure of local
blocks with designated input and output variables. Where the order
of construction events is significant but dynamic, the client code
is wrapped in lambda expressions, in Command pattern style, for
scheduling at the discretion of the code generator. For instance, the
code that loads the operand for a write to an instance field is sand-
wiched implicitly between aload_0 (this) and putfield instructions.

When it comes to staged meta-programming, LLJava-live has
full support for cross-stage persistence: Not only primitive values,
but arbitrary live objects can be transferred from the meta to the
object stage. While the former are easily reproducible in JVM byte-
code as “fossile” constants, the latter require more sophisticated
treatment. LLJava-live solves the problem by closure conversion, in
the same way it is also employed by the Java language for the re-
lated problem of lexical capture in nested classes. The LLJava-live
code generator records all references to cross-stage object refer-
ences loaded as constants by instructions of the object program, and
turns them transparently into synthetic constant fields, to be ini-
tialized by additional constructor parameters. The actual references
are then passed automatically at instantiation time of the freshly
loaded next-stage class. From the user perspective, the mechanism
simply offers an overloaded variant of the load operation, with a
live operand. (See Figure 8 for an application.)

1.3 Embedded Domain-Specific Languages

Embedded domain-specific languages are languages in a wider
sense, having no specific syntax or parsing tools. An EDSL does
have an abstract syntax however, and thus a precise notion of well-
formed instances. Instances are realized in terms of data types or
APIs defined in a host programming language, and can be manipu-
lated and checked in the usual ways.

The relationship is symbiotic in nature: The host language pro-
vides general-purpose programming features, semantic constraints,
and a runtime environment, whereas EDSLs provide adequately
focused expressiveness for specific domains and tasks. The design
and use of EDSLs is considered a key concept in the paradigm of
language-oriented programming [7].

Compared with traditional textual DSLs, an EDSL has a dis-
tinctly more technical appearance, and is certainly less accessible

to the non-programmer. On the upside, however, the programmatic
construction of EDSL programs as meta-programming in the host
language has multiple advantages: EDSL object programs can be
constructed automatically by algorithms in addition to just denoted
statically, thus covering all needs for parametrization and macro
programming in a unified framework; the construction expressions
can be checked statically with full integration into the host build
process; control and data flow between host and EDSL program are
smooth and efficient; and last but not least, the EDSL can inherit
runtime environment and compilation features of the host language
if properly adapted [20].

LLJava-live has been created in order to accelerate various non-
trivial EDSLs by compilation; namely the pattern-matching lan-
guage Paisley [23], the synchronous data-flow programming lan-
guage Sig-adLib [22] and the parser combinator language Ramus
(unpublished work in progress). The present paper is a summary
of the resulting experiences, applied to an artificial but educational
subject.

2 THE WHILST LANGUAGE

As the running example for the main part of the present paper, we
present Whilst, a simple old-fashioned structured imperative pro-
gramming language inspired by the while construct of computabil-
ity theory [16], and the example language in [17]. The features of
Whilst have been selected for didactic value, not for fitness for par-
ticular real-world programming purpose. As a true EDSL, Whilst
has neither concrete syntax nor stand-alone programming tools. Its
abstract syntax and all aspects of operational semantics are realized
as an object model and its APIs, within the host language Java.

2.1 Static Structure

The static structure diagram of the abstract syntax model is depicted
in Figure 1: A Program is a collection of global variables and named
procedures.

A Procedure is either Foreign or Domestic. The former are im-
plemented in any JVM language, by a method of some live object
bound by reflection. The latter are implemented in Whilst, by
specifying zero or more parameter variables, a result variable and
a body statement. Every procedure has exactly one result, which
may of void type. There is no return operation; the effective result
is the final value of the result variable, which may optionally be
one of the parameters.

A Statement is either a Block, which declares a set of zero or
more local variables and contains a sequence of zero or more sub-
statements, an Assignment, which writes the result of an expression
to a variable, or a Loop, which is specified by a head expression
and a body statement.

Two variants of loops are predefined in the language (not shown
in the diagram): A repeat loop first evaluates its head expression to
an integer, and then repeats the body statement a corresponding
number of times. AWhile loop first evaluates its head expression
to a boolean, and then either executes the body once and restarts,
or terminates.

An Expression is either aVariable orConstant, anOperationwith
an Operator and one or two operand expressions, or a procedure
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Call with zero or more argument expressions. An expression may
also stand in for a statement, discarding its result.

Variables represent static identifiers in the abstract syntax; they
are not carriers of mutable state themselves. A single variable object
may be reused in different environments, even in nested (shadow-
ing) or concurrent ones, without conflict. Furthermore, there is
no nontrivial equality on variable objects beyond their identity; a
new variable object (in the Java sense) always represents a fresh
identifier.

2.2 Type System

The Whilst type system is quite primitive. The types void, integer
and boolean, on which the language constructs depend, are pre-
defined. Other types may be defined by language extensions (see
below), but there is no built-in support for more complex features
such as aggregate or enumeration types, subtyping or genericity.

All variables, expressions and assignments are strongly typed,
both in the Whilst type system and, via type parameters in the
object model, in the underlying Java type system. Type errors are
detected at construction time of the abstract syntax objects. As
a consequence of the design decision to use Java genericity for
expressions of various types, Whilst values can not be of primitive
types, but have to be boxed. (A typical performance issue of dynamic
languages, to be adressed in compilation.)

Operators are polymorphically overloaded. The language holds
an extensible collection of implementations of some operator for a
particular type signature. Both argument types and result type are
used to distinguish overloaded cases.

By contrast, procedures are monomorphic. Each procedure name
in a Whilst program may be associated with only one type signa-
ture, and one implementation.

2.3 Recursion

Whilst procedures are recursive. Both domestic and foreign pro-
cedures of a program may call themselves or each other without
restrictions. Foreign procedurs may also define their own private
state, and call themselves or any other foreign code.

In order to construct recursive programs with type safety, proce-
dures must be declared with their type signature before they are
defined. Thus calls can be checked at construction time.

2.4 Language Packs

The Whilst language is designed for extensibility. Definitions of
types, operator identifiers and typed operator implementations can
be organized as language packs. Each language pack is an instance
of a subclass of LanguagePack, and may provide both operational
definitions and meta-level factory methods for the well-typed nota-
tion of expressions.

Operational semantics of a Whilst program are relative to an
underlying Language object, which is a library of such definitions,
obtained by ad-hoc construction or by pasting together the ap-
propriate language packs. The language library stores operator
implementations as instances of the standard functional interfaces
Function and BiFunction, such that lambda expressions may be

used for their concise implementation. Figure 2 shows the rele-
vant excerpt pertaining to integer addition, with a lambda-based
operator definition and type-safe expression factory method.

Several language packs have been predefined to demonstrate
the possibilities: The BasicLanguagePack defines integer addition,
subtraction and the nonzero predicate, barely enough for nontriv-
ial behavior. Variants of the ArithmeticLanguagePack define the
other common operations on integer and real numbers (the latter
represented as Java double), respectively. The LogicLanguagePack
defines boolean operations, and the Iverson bracket that maps true
to 1 and false to 0.

2.5 The Builder API

TheWhilst abstract syntax model comes with a Builder API that al-
lows the reasonably concise construction of programs with complex
Java expressions.

Figure 9 depicts a worked-out example, the implementation of a
simple integer square root algorithm (Whilst Builder expression
top left, equivalent Java code top right). The algorithm works by
iterated subtraction of the differences 𝑑 of successive square num-
bers 𝑟2 from the argument 𝑛. Since those differences have a regular
form, with the invariant 𝑑 = (𝑟 + 1)2 − 𝑟

2
= 2𝑟 + 1, only addition,

subtraction and comparison operations are required.

2.6 Error Handling

The static semantics of Whilst is subject to many obvious type
and context constraints. Violations of these are detected preferrably
at construction time of the corresponding abstract syntax objects
if feasible, or at interpretation time otherwise, and reported by
throwing checked exceptions. This aspect of the language is omitted
from API presentations for the sake of focus and brevity.

3 INTERPRETATION

The operational semantics of Whilst program constructs is given
in direct form as a decentral interpreter. Each basic category of
syntactic entities comes with a mode of interpretation, realized as
a method: Procedures can be called, statements can be executed,
expressions can be evaluated.

All Whilst abstract syntax objects are context-free; they can be
shared between parts of the same or different programs, without
affecting the semantics of the abstract syntax graph. Thus their
interpretation in context requires additional information, which is
bundled into an Environment object that is passed to each interpre-
tation method.

The resulting API is depicted in Figure 3. For better overview
over the cross-cutting nature of the API, we adopt the notation
of AspectJ [4] extension methods, and prefix the name of a lone
method with the name of its conceptually enclosing class.

The language and program underlying an environment are con-
sidered constant during each interpreter session. For variables, it
is enforced that each variable is declared before a write, and writ-
ten (including, as a special case, initialized with the type-specific
default value) before a read.
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Figure 1: Static structure of the Whilst abstract syntax

public class BasicLanguagePack extends LanguagePack {

public static final PLUS = new Operator();

public void define(Language target) {
target.defineBinaryOperator(INTEGER, PLUS,

INTEGER, INTEGER,
(x, y)→ x + y);

}

public Expression<Integer> add(Expression<Integer> x,
Expression<Integer> y) {

return new Binary<>(INTEGER, PLUS, x, y);
}

}

Figure 2: An operator syntax and semantics definition

public abstract Object Procedure.call(Environment env,
Object... args);

public abstract void Statement.execute(Environment env);

public abstract A Expression<A>.evaluate(Environment env);

public class Environment {
public Language getLanguage();
public Program getProgram();
public void declare(Variable<?> variable);
public <A> A read(Variable<A> variable);
public <A> void write(Variable<A> variable, A value);

}

Figure 3: Whilst Interpretation API
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public R Constant<R>.evaluate(Environment env) {
return value;

}

public R Variable<R>.evaluate(Environment env) {
return env.read(this);

}

public R Unary<T, R>.evaluate(Environment env) {
final T arg = operand.evaluate(env);
return env.getLanguage()
.getUnaryOperator(getType(), getOperator(),

operand.getType())
.apply(arg);

}

public R Binary<T, U, R>.evaluate(Environment env) {
final T arg1 = operand1.evaluate(env);
final U arg2 = operand2.evaluate(env);
return env.getLanguage()
.getBinaryOperator(getType(), getOperator(),

operand1.getType(), operand2.getType())
.apply(arg1, arg2);

}

public R Call<R>.evaluate(Environment env) {

final Object[] argValues = evaluateToArray(arguments, env);
final Procedure callee = env.getProgram()
.getDefinedProcedure(procedureName);

final Object result = callee.call(env, argValues);
return getType().cast(result);

}

public void Constant<R>.compileEvaluate(CodeGenerator cg) {
getType().compileConstant(cg, value);

}

public void Variable<R>.compileEvaluate(CodeGenerator cg) {
cg.load(cg.getCompiledVariable(this));

}

public void Unary<T, R>.compileEvaluate(CodeGenerator cg) {
operand.compileEvaluate(cg);
cg.getLanguage()
.compileUnaryOperator(cg, getType(), getOperator(),

operand.getType());
// implicit data flow via operand stack

}

public void Binary<T, U, R>.compileEvaluate(CodeGenerator cg) {
operand1.compileEvaluate(cg);
operand2.compileEvaluate(cg);
cg.getLanguage()
.compileBinaryOperator(cg, getType(), getOperator(),

operand1.getType(), operand2.getType());
// implicit data flow via operand stack

}

public void Call<R>.compileEvaluate(CodeGenerator cg) {
cg.loadThis();
for (Expression<?> arg : arguments) arg.compileEvaluate(cg);
final Class<?> rtype = cg.getCompiledType();
final Class<?>[] ptypes = cg.getCompiledTypes(arguments);
cg.invokeVirtualSelf(rtype, procedureName, ptypes);
// static typing, no cast

}

Figure 4: Interpreted (left) and compiled (right) evaluation of expressions; synopsis

3.1 Evaluation of Expressions

Evaluation of expressions is defined decentrally case by case (see
Figure 4, left; also cf. Figure 1 for part names in aggregates):

A constant has a value that has been fixed at construction time.
Evaluation returns that value, regardless of the environment. A
variable evaluates to its current binding in the environment, which
may fail if the variable is undeclared or uninitialized.

An operation is evaluated by recursively evaluating the operand(s)
in the same environment first, then looking up the operator def-
inition for the pertinent type signature in the language library,
and then invoking that definition. By analogy, a procedure call
is evaluated by recursively evaluating the arguments in the same
environment first, then looking up the procedure definition in the
program, and then invoking that definition. Finally, the result needs
to be type-checked, because procedures are not statically typed.

3.2 Execution of Statements

Execution of statements is defined decentrally case by case (see
Figure 5, left): An expression is executed as a statement by eval-
uating it in the given environment, and discarding the result. An
assignment is executed by evaluating its source (rhs) expression,
and then writing the result to its target (lhs) variable in the same

environment. A while loop is executed in metacircular fashion, by
evaluating its head and executing its body, in the same environment,
in a Java while loop. A block is executed by creating a new nested
environment, declaring all local variables, then executing its sube-
pressions iteratively in that environment, and finally discarding the
local environment.

3.3 Calling Procedures

Calling of procedures is defined decentrally case by case (see Fig-
ure 6, left): A domestic procedure is called by creating a new top-
level environment (stack frame), setting each parameter variable
to the corresponding value, initializing the result variable if neces-
sary, then executing the procedure body in that environment, and
finally discarding the environment. A foreign procedure is called by
simply invoking a suitably prepared JVM method handle. Foreign
procedure implementations are required to use unboxed values of
primitive type at their interface.

3.4 Discussion

The interpreter, as outlined above, has three evident performance
bottlenecks that need to be adressed by any useful compiler: The
lookup of variable, operator and procedure bindings; the dynamic
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public void Expression<R>.execute(Environment env) {
evaluate(env);
// result is discarded implicitly

}

public void Assignment<R>.execute(Environment env) {
env.write(target,

source.evaluate(env));
}

public void While.execute(Environment env) {

while (head.evaluate(env))

body.execute(env);
}

public void Repeat.execute(Environment env) {
int n = head.evaluate(env);
while (n−− > 0) body.execute(env);

}

public void Block.execute(Environment env) {
env = env.newBlock(this);
for (Variable<?> v : locals) env.declare(v, true);
for (Statement s : steps) s.execute(env);
// env is discarded implicitly

}

public void Expression<R>.compileExecute(CodeGenerator cg) {
compileEvaluate(cg);
if (getType() != VOID) cg.pop();

}

public void Assignment<R>.compileExecute(CodeGenerator cg) {
cg.store(cg.getVariableForWrite(target),

() → source.compileEvaluate(cg));
}

public voidWhile.compileExecute(CodeGenerator cg) {
cg.betweenLabels((before, after) → {
getHead().compileEvaluate(cg);
cg.branchIfZero(after);
getBody().compileExecute(cg);
cg.branch(before);

});
}

public void Block.compileExecute(CodeGenerator cg) {
cg.newBlock(this, ()→ {
for (Variable<?> v : locals) cg.declare(v, true);
for (Statement s : steps) s.compileExecute(cg);

});
}

Figure 5: Interpreted (left) and compiled (right) execution of statements; synopsis

public Object DomesticProcedure.call(Environment env,
Object... arguments) {

env = env.newCall(this);
env.substituteAll(parameters, arguments);
if (!parametersContainResult) env.declare(result, true);
body.execute(env);
return env.read(result);

}

public Object ForeignProcedure.call(Environment env,
Object... arguments) {

return handle.invokeWithArguments(args);

}

public void DomesticProcedure.compile(String name,
CodeGenerator cg) {

cg.methodForProcedure(this, () → {
cg.bindAllInputs(parameters);
if (!parametersContainResult) cg.bindOutput(result);
body.compileExecute(cg);
if (parametersContainResult) cg.copyOutput(result);

});
}

public void ForeignProcedure.compile(String name,
CodeGenerator cg) {

cg.methodForProcedure(this, () → {
owner.ifPresent(cg::loadEnv);
cg.getInputs().forEach(cg::load);
cg.invoke(method);

});
}

Figure 6: Interpreted (left) and compiled (right) procedure calls; synopsis

traversal of the abstract syntax tree; and the boxed representation
of data.

4 COMPILATION

The former two shortcomings of interpretation are dealt with
routinely by the general principle of compilation as staged in-
terpretation, by shifting work from the (runtime) object stage to
the (compile time) meta-stage. For an example of lookup elimi-
nation, compare the object-level lookup of interpretation method

7
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Variable.evaluate and themeta-level lookup of its compilation coun-
terpart Variable.compileEvaluate in Figure 4. For an example of
traversal elimination, compare the object-level for loops of inter-
pretation method Block.execute and the meta-level for loops of its
compilation counterpart Block.compileExecute in Figure 5.

By contrast, the last shortcoming is an artefact of the irregu-
lar Java type system, and requires more ad-hoc treatment, where
each Whilst type is optionally assigned a second, primitive rep-
resentation, and the canonical (un)boxing conversions are applied
transparently.

4.1 Code Generator

Following the idea that a compiler is just a staged interpreter, the
compilation API of the Whilst model is analogous to the interpre-
tation API. Instead of directly producing the effect of a program
construct, however, a fragment of code is emitted that can produce
the effect at a later stage.

Thus dependency on context arises not just at the object stage on
the input side as in the interpretation case, but also at themeta-stage
on the output side, where code fragments have to be assembled in
a meaningful way. In order to synchronize meta and object context,
both are bundled into aCodeGenerator object that is passed around.

In accordance with the structure of JVM bytecode, the compila-
tion strategy is split into two layers: an upper layer that maps whole
Whilst programs to JVM classes and is implemented centrally in
the code generator, and a lower layer that maps statements and ex-
pressions to instruction sequences, and is implemented decentrally,
alongside the interpreter clauses, in the constituent abstract syntax
objects.

An interesting secondary aspect of staging is that error-checking
diagnostics represented by checked exceptions are to be concen-
trated at the meta-stage, thus giving a concrete metric of the degree
of type and context safety achieved for the object stage.

4.2 Layers of Compilation

The upper layer is determined by basic object-oriented conventions:
a Whilst program is compiled into a single JVM class, with each
global variable mapped to a private field, and each procedure to a
public method, respectively. All of these are non-static, such that
multiple instances of the same program can coexist concurrently
without interference, just like multiple interpretation environments.

The upper layer tasks are implemented in the CodeGenerator
object that is passed around, and amount to some 200 lines of Java
code, mainly adapter boilerplate for the underlying LLJava-live
API.

The lower layer is determined by the above principle of com-
pilation as staged interpretation, and duplicates the structure of
the interpretation API exactly. It makes both direct (generic) and
indirect (Whilst-specific) use of the LLJava-live APIs inherited
by the CodeGenerator class; the direct uses are underlined in the
code shown in Figures 4–8.

At this lower layer, staged metaprogramming tactics and the
impact of heteroiconicity come into play. The meta and object level
are encoded as Java source and JVM bytecode, respectively. Since
these formats are typically mediated by a compiler, the programmer
who stages an interpreted has to think in compiler construction

concepts. As a helpful guideline, one may first compile the inter-
preter with javac and observe the isolated bytecode pattern, and
then generalize to a modular code building block.

4.3 Compiling Evaluation of Expressions

Evaluation of expressions is compiled to instruction sequences that
loads (pushes) the result value onto the JVM operand stack (see
Figure 4, right):

Evaluation of a variable compiles to a LLJava-live load operation,
which in turn is compiled into a JVM load instruction for local
variables, or a getfield instruction for fields, respectively. Evaluation
of a constant compiles to a type-specific constant-loading operation,
of which the JVM has various.

Evaluation of composite expressions compiles recursively to
instruction sequences that load the values of subexpressions on
the operand stack, followed by an operator or method invocation
instruction that consumes (pops) these intermediate values and
loads a result.

4.4 Compiling Execution of Statements

Execution of statements is compiled into instruction sequences that
leave the operand stack invariant, and thus work by side effect (see
Figure 5, right):

Execution of an assignment compiles to a LLJava-live store
operation for the target variable, which in turn is compiled into a
JVM store instruction for local variables, or a putfield instruction for
fields, respectively. The value to be stored is loaded onto the operand
stack by inserting the instruction sequence obtained by compiling
the evaluation of the source expression, in the appropriate place.

Execution of a while loop is compiled in the way recommended
by the JVM specification [12, Ch. 3]. For illustration purposes, the
code generator is shown here instruction by instruction, rather
than wrapped up in a convenience method. Whether to use the
basic LLJava-live APIs directly, or to aggregate them into more
problem-specific high-level operations is a controversial matter of
design. The adequate amount of boilerplate may vary with EDSL
types and user context.

Execution of a block is compiled by declaring the local variables
in the code generator, and then compiling the substatements se-
quentially, thus concatenating their instruction sequences. Note
how both the variable management and the iterative traversal of
substatements occur at the meta stage, and are thus eliminated
from the object stage.

4.5 Compiling Procedures and Calls

As shown in Figure 4, procedure calls are always compiled to JVM
invocations of methods of the same compiled program object (see
Figure 6, right).

For domestic procedures, there is a corresponding target method,
by design of the high-level compilation scheme. The code generator
for the procedure populates the body of that method, and han-
dles the special case of the result variable being contained in the
parameter list.

For foreign procedures, a bridge method is created that calls the
actual target. The method to be invoked may be either static, or
non-static and requiring an owner object fixed at construction time.
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The dynamic method reference, stored in the abstract syntax as
reflection data, is compiled to a hard-coded JVM method reference
in both cases. The owner object may be any live object of the meta-
level Java program, and is included into the compiled program by
cross-stage persistence.

4.6 Putting Things Together

As a practical example, Figure 9 (bottom left) depicts the JVM byte-
code (disassembled with javap) generated for the integer square
root program. Since the code has been generated in decentral fash-
ion and not post-processed, the contributions of individual abstract
syntax entitites can be clearly discerned.

Note the redundant operations between adresses 8–16, due to the
double role of boolean values as data and branch conditions. How-
ever, since performance-relevant code is eventually JIT-compiled
anyway, there may be no need for further optimization at this stage.

Compare the resulting machine code depicted in Figure 9 (bot-
tom right). Only instructions related to stack administration and
synchronization points have been omitted. The synopsis suggests
that the JIT compiler is quite able to optimize the redundancy away.
(See also section 6 for further evidence.)

4.7 Special Considerations

4.7.1 The Void Type. The JVM is plagued by an inherited illness
running in the C-like language family: void is nearly a type, but not
quite, giving rise to annoying irregularities, such as distinct unary
and nullary return instructions. The issue is further confounded by
the fun fact that the Java reflection framework considers void.class
a proper primitive type reification.

By contrast, in Whilst the void type is completely regular, al-
beit without constants or operators, such that void variables are
doomed to retain their default value forever. They do not have a
proper JVM counterpart, except for void result variables that map
to void (non-)results. Hence the theoretically nicest compilation
tactic is to eliminate them from code generation, and thus also from
variable and parameter lists, altogether. Most of the dirty work can
be accomplished by extending the concept of LLJava-live virtual
variables by a new case, whose load and store operation do nothing.
Some situations require special care, e.g., see the explicit conditional
pop instruction in Figure 5 (right).

4.7.2 The Boolean Type. The JVM does have a proper boolean
type, but emulates truth values with int words. The specification is
slightly ambiguous about the supposed encoding, namely whether
true is denoted by any nonzero value (as in C), or just by the value
one. Each case has some slight advantages in compilation: The
former simplifies the nonzero check (to a no-operation), whereas
the latter simplifies the Iverson bracket (also to a no-operation) and
the and and not operations.

The decision for either encoding can be realized as a configurable
property of the code generator, with the compilation code for each
affected operation performing a case distinction at the meta stage,
thus incurring no object-level penalty at all.

4.7.3 Falling Back to Interpretation. In the staged meta-program-
ming approach, the dynamically constructed object program is
completely integrated into its meta-level host. There is no reason

public void BasicLanguagePack.define(Language target) {
// ...
target.defineCompileBinaryOperator(INTEGER, PLUS,

INTEGER, INTEGER,
cg → cg.add());

}

Figure 7: Compilation in basic language pack

final Function operator = cg.getLanguage()
.getBinaryOperator(getType(), getOperator(),

operand1.getType(), operand2.getType());
cg.loadEnv(operator);
operand1.compileEvaluate(cg); /∗[B]∗/
operand2.compileEvaluate(cg); /∗[B]∗/
cg.invoke(METHOD_BiFunction_apply); /∗[U]∗/

Figure 8: Staged eta expansion of binary operators

why the call relationship should be asymmetrical; the host evidently
wishes to call the object program, but the object program might
call back just as well.

This simple observation has far-reaching implications for compi-
lation: If a compiled program may call back to interpretation, then
compilation support, which is by design decentral as argued above,
need not be complete in order to be effective.

This does not mean that any old fragment of a program can be
excluded from compilation, however, as obvious from the API. Since
interpretation depends on an environment, only certain articulation
points of the control flow graph, where the appropriate environ-
ment can be reconstructed from compiled information, are suitable
for switching back. In the Whilst setting, two categories of such
articulation points can be found, namely domestic procedures and
operator implementations. For the former a top-level environment
can be crafted, for the latter no environment is required at all.

LLJava-live has a generic pattern for falling back to the pre-
ceding stage. Depending on the theoretical background, it can be
understood as the staged version of eta expansion, or as an instance
of the reverse stub construct for virtual machines. The pattern can
be described concisely as:

“By default, implement the staged counterpart of an
operational API method𝑚 as the generation of code to
invoke𝑚 on the cross-stage persistent owner object.”

For example, consider again the case of the integer addition oper-
ator. The basic language pack contains an additional definition, nat-
urally in terms of the corresponding JVM instruction (see Figure 7
and cf. Figure 2). If this definition were absent, then the fall-back
mechanism would emit code to call the functional interface method
BiFunction.apply of the object created by the lambda expression in
the interpreted definition of the operator (see Figure 8).

In the resulting object code, the lambda object that reifies the
operator is loaded as a cross-stage persistent reference. (The lookup
has been performed at the meta-level exactly as in the interpreter,
except that the actual invocation of the apply method is of course
omitted.) The operand values are loaded onto the operand stack by
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the compiled code for the evaluation of the operand expressions.
Finally, the apply method that is bound to the lambda expression
is invoked. The code has been simplified at the positions marked
with [B] and [U], where boxing and unboxing of primitive values,
respectively, has to be performed in a type-specific way, since the
lambda expression works on boxed types.

4.7.4 Exploiting Staged Code Lifetime. The lifetime of LLJava-live-
generated code for later stages is limited to the host JVM. It is
intended to be executed right away without persistent storage of
generated class bytecode. While this appears wasteful, there are
some distinctive and intriguing advantages, just like for JIT compi-
lation to machine code. In the following, we describe a particular
illustrative example application in theWhilst compiler; the general
potential of the technique is much wider.

An interpreted Whilst program comprises global variables and
procedures with dynamic scope and type, which can hence be
organized simply via hashtables. By contrast, compilation turns
variables and procedures into statically scoped and typed fields
and methods, respectively. These require heterogenous access code,
rather a switch statement than a hashtable lookup. For the purpose,
we adopt a technique from the reference implementation of switch-
on-String, introduced to Java in Version (1.)7.

The compilation tactic uses ordinary int-based switch cases
as hash buckets. This requires that the hash code of a case label
constant at compilation agrees with the hash code of the matching
key value at execution time. For objects of class String, the hash
code is specified explicitly, hence the tactic is always applicable. In
the case of staged code, compilation and execution time share the
same JVM session, hence any object whose hash code is stable for
lifetime, even if not specified any further, will do. This includes the
default implementation Object.hashCode(). The Whilst compiler
exploits the behavior to generate switch statements on objects
of class Variable for efficient, statically safe implementations of
Environment.read/write.

5 EXTENDING THE LANGUAGE

The Whilst language can be extended in various ways. Depending
on their nature, the burden of compilation support can be felt with
very different impact. Analogous to the case of the infamous expres-
sion problem [25], there is an axis that cross-cuts interpretation and
compilation, as well as an axis from which they can be separated,
and dealt with in an agile manner.

The abstract syntax is a class hierarchywith public APIs only, and
hence open for extension by new subclasses for new language con-
structs. Several kinds of obvious extensions that illustrate common
interpretation and compilation tactics come to mind: IfThenElse
statements, short-circuiting boolean operators, aComma constructs
that prefixes an expression with a statement, concurrency primi-
tives, etcetera.

There is no simple way to make compilation support optional,
and transparently fall back to interpretation, for such new language
constructs. By the self-similar nature of statements and expressions,
this would require reconstructing an environment for interpreta-
tion, in the middle of things anywhere in compiled code. That might
not be impossible, but is hardly a trivial task. Thus, compilation is

only feasibly available in the presence of new language constructs
if they all support it.

For the articulation points designed into the language, things
are different however. For operator implementations defined ad-
hoc or in language packs, there is a clear and transparent fall-back
mechanism, such that their compilation support is nice to have for
optimal performance, but otherwise completely optional. A user
who extends the language in this way needs not even to be aware
of the possibility of compilation, and can still provide definitions
that function correctly in compiled programs. This lowers the bar
of expertise required to contribute to language expressivity, and
enables rapid prototyping of experimental features.

6 BENCHMARKS

The performance of the Whilst interpreter and compiler has been
evaluated empirically.

All measurements have been carried out on a dual Core i5-10210U
CPU at 1.6 GHz with 8GiB of RAM, running Ubuntu 20.04LTS and
the OpenJDK 11.0.10 64-bit Server VM. Times are wallclock times
measured with System.nanoTime precision. To mitigate the erratic
influence of JIT compilation and GC pauses, we report median and
median absolute deviation of a sample of 𝑁 = 100 repetitions, after
a warm-up of the same magnitude.

The following microbenchmarks have been investigated: Totient
calculates Euler’s totient function, 𝜑(𝑛) = ∑𝑛

𝑖=1[gcd(𝑛, 𝑖) = 1],
where the subprocedure gcd is implemented with Euclid’s algo-
rithm, for 𝑛 = 100 000. Fibonacci calculates the 𝑛-th Fibonacci
number, with the naïve recursive definition 𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1, and
if emulated by while, for 𝑛 = 31. Spin calculates a full-circle 2D
rotation in 1 296 000 small steps, by iterated multiplication of a 2×2
rotation matrix corresponding to an angle of one arcsecond, where
matrix elements are held individually as global variables.

For each benchmark, the interpreted and compiled Whilst pro-
grams are investigated, together with a hand-coded baseline Java
implementation, compiled statically with javac. The results are
consistent with expectations: Compilation increases the speed of
Whilst programs by up to three orders of magnitude, which ap-
pears reasonable for tight loops. The speedup is particularly dra-
matic for the Spin benchmark, where the JVM JIT compiler has been
observed to select the appropriate AVX [14] extension instructions
with good effect.

Running times for compiled Whilst are indistinguishable from
the baseline given the observed uncertainties, except in the case
of Fibonacci, where javac does a better job at branch condition
optimization than our simplistic code generator, resulting in a 10%
penalty. However, the benefits of simplicity are reaped in the com-
pilation phase, which performs LLJava-live AST construction and
checking, bytecode serialization to a heap array, class loading and
instantiation of object code, in about a millisecond for each example.

Bytecode size for compiled Whilst is generally slightly bigger
than for the baseline. This is due to the emission of some redundant
instructions that would require a simple but non-local pass to clean
up. (The need to do so is not pressing, however, since the runtime
measurements show that the JVM JIT is mostly able to get rid
of them anyhow.) The exception here is the Spin case, where the
our compiler producess less code than javac. This is due to the

10



LLJava Live at the Loop MPLR ’21, September 29–30, 2021, Münster, DE

Table 1: Benchmark results

Time (ms) Totient Fibonacci Spin

interpreted 374.37±3.45 3 549.63±24.13 2 359.49±10.56
compiled 7.64±0.13 10.03± 0.11 3.18± 0.05
baseline 7.73±0.09 8.95± 0.10 3.11± 0.04
compilation 1.35±0.11 1.29± 0.13 1.45± 0.22

# AST Nodes 60 31 115
compiled (byte) 530 373 853
baseline (byte) 463 343 882

explicit initialization code for the rotation matrix with invocations
of Math.sin and Math.cos, which are naturally shifted to the meta-
level in the Whilst compiler.

7 CONCLUSION

The concept of heteroiconic staged meta-programming, as imple-
mented by the LLJava-live API, has been illustrated with the con-
struction of a competitive modular compiler for the Whilst lan-
guage from a trivial interpreter. The presentations of interpretation
and compilation of course employ different idioms of the host lan-
guage, for all the reasons given in section 1.2.2. But they are suffi-
ciently similar for the individual translation tasks to be feasible and
well-understood. In fact, the JVM specification has a whole chapter
[12, Ch. 3] entitled “Compiling to the JVM” devoted to recommended
solutions for similar problems. The design of the LLJava-live API
aspires to the same level of intuitive appeal and constructive fit, but
with executable modular code generator building blocks rather than
illustrative particular pairs of high-level and bytecode fragments.

The alternative possibility of compilation is a game-changer for
interpreter implementation; the need for complex optimizations
in the interpreter is greatly reduced. By keeping things simple, a
clean staged compiler that produces clean code is obtained. Many
of the stereotypical performance issues of interpreters, such as
dynamic scoping and typing, and abstraction barriers, vanish in
the process by virtue of standard compilation techniques, either
in the compilation step from the EDSL to JVM bytecode, or in the
subsequent JIT compilation step to machine code. Simple reference
implementations of interpreters are of course cheaper to design,
prototype, implement, test and debug. We conjecture also that their
technical documentation, and even code, may serve as effective
user training material in the process of empowerment for language-
oriented programming.

In places where the EDSL has been designed for extensibility,
fallback mechanisms from compiled to interpreted code can be
provided by a canonical technique. Thus the implementation of
compilation support is a transparent, fine-grained, optional opti-
mization task. It need not even be undertaken by the same person
or delivered in the same unit of deployment, giving the whole
compilation business a distinctly “agile” and “democratic” feel.

Thus the stakeholders of a DSL can have the best of both worlds:
A simple language design with intention-centric operational se-
mantics in terms of an interpreter reference implementation, and a
transparent acceleration strategy with flexible modular case-based
compilation to JVM bytecode. The latter smoothly extends the

“drainage basin” of the underlying JVM JIT compilation capabilities
and puts high-level DSLs in effective direct contact with state-of-
the-art machine code realizations.

7.1 Related Work

The most popular DSL construction framework on the JVM is
Xtext [6], together with the backend language Xtend [5]. These
set the standard for maturity and IDE integration. However, they
are largely concerned with textual, stand-alone DSLs that integrate
into a multilingual project at build time rather than at runtime.

The existing work closest in spirit to our approach is Lightweight
Modular Staging (LMS) [15], which has been implemented in Scala.
It demonstrates how close one can get to homoiconic metaprogram-
ming on the JVM, making heavy use of the sophisticated Scala type
system, overloading and mixins. However, their code generation
strategy involves generating Scala source code and invoking the
compiler, thus the predicate “lightweight” certainly does not ex-
tend to the backend, in particular in comparison with LLJava-live.
The description in [15] does not clarify to what extent cross-stage
persistent live objects are supported.

7.2 Future Work

The LLJava-live API is novel and experimental, hence it is not yet
clear which features are the truly indispensable ones for staged
meta-programming on the JVM. The case studies that have been
carried out so far are inconclusive, owing to their very different
nature: the Whilst and Sig-adLib languages are dominated by
structured control and data flow, respectively, where as Paisley is a
logical language characterized by data matching and backtracking.
A consolidation and validation of the interfaces developed so far is
needed.

The bytecode resulting from a compiler obtained in the way
described here has a notable fine-grained compositional structure.
All case studies so far indicate that this matches well with the
heuristics of the JVM JIT, resulting in well-optimized machine code.
The limitations and caveats of this beneficial situation are not yet
well-understood, and require future research.

An aspect-oriented notation has been used in this paper, half-
heartedly for solely illustrative reasons, for the synopsis of inter-
preter and compiler code. The question whether interpretation and
staged compilation of EDSLs are suitable for implementation by
aspect-oriented Java programming in the narrow sense is intriguing,
and should be investigated in the future.
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final BasicLanguagePack basic = new BasicLanguagePack();
final IntegerArithmeticLanguagePack arith = new IntegerArithmeticLanguagePack();
return new Builder()
.withLanguagePacks(basic, arith)
.buildProgram(prog→ {

final Variable<Integer> n = Type.INTEGER.newVariable("n");
final Variable<Integer> r = Type.INTEGER.newVariable("r");
prog
.procedure(r, "isqrt", n)
.define(isqrt → {

final Variable<Integer> d = Type.INTEGER.newVariable("d");
isqrt.withLocal(d)
.assign(d, basic.constant(1))
.assign(r, basic.constant(0))
.whileLoop(arith.greaterOrEqual(n, d), l→ {

l .assign(n, basic.subtract(n, d))
.assign(d, basic.add(d, basic.constant(2)))
.assign(r, basic.add(r, basic.constant(1)));

});

});
});

class IntegerSqrt {

int isqrt(int n) {
int r;

int d;
d = 1;
r = 0;
while (n >= d) {
n = n − d;
d = d + 2;
r = r + 1;

}
return r;

}
}

public int isqrt(int);
Code:

0: iconst_0
1: istore_3
2: iconst_1
3: istore_3
4: iconst_0
5: istore_2
6: iload_1
7: iload_3
8: if_icmplt 15
11: iconst_1
12: goto 16
15: iconst_0
16: ifeq 34
19: iload_1
20: iload_3
21: isub
22: istore_1
23: iload_3
24: iconst_2
25: iadd
26: istore_3
27: iload_2
28: iconst_1
29: iadd
30: istore_2
31: goto 6

34: iload_2
35: ireturn

0x00007fa63c3bb25c: mov $0x1,%r11d

0x00007fa63c3bb262: xor %eax,%eax

0x00007fa63c3bb264: jmp 0x7fa63c3bb283
0x00007fa63c3bb266: nopw 0x0(%rax,%rax)
0x00007fa63c3bb270: mov 0x108(%r15),%r10
0x00007fa63c3bb277: sub %r11d,%edx

0x00007fa63c3bb27a: add $0x2,%r11d

...

0x00007fa63c3bb283: cmp %r11d,%edx
0x00007fa63c3bb286: jnl 0x7fa63c3bb270

...
0x00007fa63c3bb297: retq

Figure 9: Four views on the integer square root algorithm: Whilst Builder construct hosted in Java (top left); hand-coded

Java equivalent (top right); javap disassembly of JVM bytecode from LLJava-live compilation (bottom left); disassembly of

machine code from JVM JIT-compilation (bottom right).
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