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Abstract: The traditional approach to recursive types in higher-order func-
tional languages imposes strong restrictions on admissible recursion schemata:
a sum of products of simple type expressions, possibly parametric, is the norm.
In this paper, we advocate a more liberal type definition language, combining
standard type constructors and first-order parametric polymorphism with arbi-
trary recursion and some useful non-free constructs. The existence of fixpoints
and some other properties of the defined types, e.g., the existence of a com-
putable equality and total order, can be inferred by abstract interpretation of
the type equations in terms of cardinality classes.

Keywords: recursive types, polymorphism, fixpoint semantics, cardinality,
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1 Introduction

The purpose of this paper is to exemplify the static analysis of complex type
definitions by means of abstract interpretation in some reasonably simple se-
mantic domain. The motivation for such an effort is to relax some of the his-
torically evolved restrictions of type definitions, without losing the benefits of
strong static typing, both for early detection of program errors and as a guide-
line for efficient code generation. Instead of “outsourcing” all useful nontrivial
type constructs into auxiliary libraries, we advocate the integration of seman-
tically well-founded high-level type operations into the core of a programming
language. This is already an established practice in the area of specification
languages, whether intended to be executable (such as Microsoft’s AsmL[6]) or
not (such as Z[7]).

The paper is organized as follows: First, some desirable generalizations of
common type definition techniques are outlined and their implications discussed.
Then, a type definition language incorporating these generalizations is presented
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in front-end syntax, back-end representation, and denotational semantics. Last,
and most importantly, an abstract interpretation of type definitions is defined,
enabling constructive algorithms for the relevant semantic problems that are
not decidable from the set-based model alone.

1.1 General Type Recursion

Free data types, which essentially describe term languages, are commonly de-
fined by systems of recursive type equations. A language might also allow other
type definition, such as type aliases, parametricity or structured type definitions
that do not fit into the sum-of-products pattern. These should all be orthogonal
extensions of the same base mechanism, not only for uniformity, but also to ben-
efit from each other’s abstractions: E.g., combining type aliases and parametric
polymorphism immediately yields type macros:

binOp[α] ::= (α × α) → α

relation [α] ::= (α × α) → bool

Expanding such definitions conveys more information to the type checker than
treating them as opaque data type definitions, enabling type compatibility rules:

binOp[α] = relation [α] ⇐⇒ α = bool

The definitions of data types need not be restricted to the sum-of-products
schema, either. Consider, e.g., this non-standard definition of nonempty α-lists:

cons[α] ::= α ×
(

cons[α] + ()
)

Such a definition is not commonly considered useful in an algebraic context,
but it is nevertheless quite a natural thing to define in a coalgebraical or imper-
ative context. Some fields of application require nonempty lists for modeling,
e.g., the combinator + of SGML and its omnipresent descendant, XML[2].

1.2 Non-Syntactic Type Constructors

The constructors of classical algebra (sum and product) are strongly connected
to context-free syntax rules: The algebra of terms is an initial model of a classical
signature. However, there are many useful type constructors whose properties
cannot be handled by syntax alone. Structures such as sets and maps are slowly
working their way from pure specification languages such as Z not only into
auxiliary libraries, but into the core of executable languages, e.g., Microsoft’s
AsmL[6]. Consider the type SETα of finite sets of αs. Clearly, such a type must
have the following properties to be of any use:

1. The element relation ∈ ⊂ α × SETα is decidable.

2. The elements of any instance of SETα can be enumerated (axiom of
choice).
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The latter property rules out purely intensional representations. But even
supposing there is an extension, the former property implies that α must pro-
vide a decidable equality. Since some other types are commonly represented
intensionally, e.g., function types, the SET constructor turns out to be partial.
Things get even more complicated when operational complexity is examined: If
α not only provides an equality, but also a total order, then there are better
time complexity bounds for most operations on SETα, e.g., time complexity of
∈ becomes O(log n), where n is the number of elements in the set. Different
representations of the SET type might be chosen depending on the properties of
the argument type.

There are some semi-automatic solutions to these problems. The type defini-
tion language of Haskell, e.g., has the ability to derive the equality and standard
order relations of a free data type (i.e., the instantiation of type classes[9] Eq
and Ord), given all field types are declared explicitly as instances of Eq/Ord.
But even the creators of Haskell admit in [3] that this mechanism is not entirely
satisfactory. Given a richer type system and some cardinality information, one
can do better: Equality and standard order can be inferred for all enumerable
types, even for some that are conceptually intensional: If proven to be enumer-
able, POWα coincides with the extensional SETα and α 9 β coincides with the
extensional α ; β. (See next section for the definition of these constructors)

The drawback is that, once having type constructors that require an equality
relation, the equivalence properties of that relation (reflexivity, symmetry and
transitivity) are part of the semantics of the type language. Then, it might
not be desirable to have the user implement this relation (and guarantee its
properties), as a Haskell programmer would do by instantiating Eq by hand.
This is not a real issue, however, because a custom equality relation can be
encoded as the kernel of a function, which is provably an equivalence relation:
For an equivalence eq ⊆ α × α, there is a suitable function eq′ : α → β, such
that eq = Ker eq′, i.e.:

x eq y ⇐⇒ eq′(x) = eq′(y)

A custom standard order can be encoded in much the same way.
To summarize: If advanced type constructors are to be supported directly

by a language, then there must be some means to check the constraints imposed
on the argument types automatically, i.e., certain properties of types and also
certain canonical operations must be inferred from the type definitions.

This approach is completely opposed to the common practice of creating run-
time libraries populated with useful data types, and having semantics specified
solely in terms of suggestive names and reference manuals.
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2 Defining Types

2.1 Type Definition Language

We define a type definition language by the following EBNF grammar:

T ::= V
[

[ T ]
]

| {} | ()

| T + T | T × T | T → T | T 9 T | T ; T

| OPT T | SEQ T | SET T | BAG T | POW T

V ::= α | β | · · · | τ | . . .

E ::= V
[

[ V ]
]

::= T

Types are defined by systems of arbitrarily recursive and (potentially) poly-
morphic type equations. Type equations E bind type variables V , optionally
with a polymorphic parameter, to type expressions T . The language of type
expressions is induced by:

1. type variables (instantiated with types if parametric)

2. the empty type {} and the void type ()

3. Cartesian product (×) and the disjoint sum (+) operators

4. spaces of total (→) and partial (9) functions and finite maps (;)

5. collection monads of optionals (OPT), finite subsets (SET), finite multisets
(BAG), finite sequences (SEQ) and arbitrary subsets (POW).

For the sake of simplicity and limited space in this paper, we consider only
parametric types (constructors) with at most one polymorphic parameter. Since
there are no tuples of types, there is no way to simulate n polymorphic param-
eters as of now, but the system can be easily generalized.

2.2 Type Representation Language

The front-end language, modeled after commonly used notations, needs to be
slightly transformed into a back-end representation to accomodate semantic
reasoning:

T ′ ::= V | F
[

[ T ′ ]
]

| {} | ()

| T ′ + T ′ | T ′ × T ′ | T ′ → T ′ | T ′
9 T ′ | T ′

; T ′

| OPT T ′ | SEQ T ′ | SET T ′ | BAG T ′ | POW T ′

F ::= W | [λ V .] T ′ | W @ R

W ::= φ | φ1 | . . .

R ::= µ (W ::= F )+

4

 markuslepper.eu

 

http://markuslepper.eu
http://www.worldcat.org/search?q=


In the type representation language, the recursion is made explicit. Re-
cursion schemata (recursions for short) R are first order citizens, with the µ-
operator binding constructor variables to defining equations and yielding the
least fixpoint of the given mutually recursive constructor family transforma-
tion. Constructors are made up of type λ-abstractions and constructor refer-
ences. Recursive constructor references are µ-bound constructor variables. A
constructor reference φ that is not recursive is expressed as the projection φ@ r

from a recursion r. Types, finally, are built with the standard operators and
explicit constructor instantiation.

The µ operator comes with the builtin fixpoint semantics of free data types
(initial algebras). There are other fixpoint semantics, e.g. cofree data types
(final coalgebras). However, the denotational semantics and the cardinality
analysis of types defined with such operators are outside the scope of this paper.

To summarize, there is a twofold abstraction involved in the definition of
types:

types

units of discourse
−→

constructors

units of semantics
−→

recursions

units of declaration

To simplify the notation of non-polymorphic types, we shall use a type t

as a constant constructor, with the meaning λ τ . t, where τ does not occur
freely in t. Dually, we shall use a constant constructor f as a type, with the
meaning f [t], where t is an arbitrary well-formed type expression, e.g. (). Then,
constructor semantics can be defined uniformly for all type equations.

Examples

The mapping from front-end to back-end language is so straightforward that
we do not define it formally in this paper. Essentially, groups of mutually
recursive equations are prefixed with a µ operator, and all other type references
are resolved and replaced by explicit @ expressions.

Some simple type definitions, both in front-end and back-end notation:

1. The natural numbers Nat :

nat ::= nat + () 7−→ µ nat ::= nat + ()

2. The homogenous lists HList :

hlist [α] ::=
(

α × hlist [α]
)

+ () 7−→ µ hlist ::= λ α .
(

α × hlist [α]
)

+ ()

3. The pure lisp lists LList defined in terms of homogenous lists. Note the
explicit name resolution in the back-end:

llist ::= hlist [llist ] 7−→ µ llist ::= (hlist @ HList)[llist ]
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4. The homogenous lists again, defined in terms of (possibly) empty and
nonempty lists:

opt[α] ::= cons[α] + ()

cons[α] ::= α × opt[α]
7−→ µ

{

opt ::= λ α . cons[α] + (),

cons ::= λ α . α × opt[α]

2.3 Denotational Semantics

We shall give näıve partial denotational semantics based on plain set-theory for
types ([[ ]]t), constructors ([[ ]]f)and recursions ([[ ]]r), respectively. The semantic
domains are:

1. the objects of the category Set for types

2. the partial endofunctors Set 9 Set for constructors

3. the finite W -indexed families of functors W ; Set 9 Set for recursions

Note that we will regard only the object-mapping part of functors in this paper.
A context Γ denotes a pair of valuation maps Γt+Γf, such that Γt : V 9 Set

and Γf : W 9 (Set 9 Set). See table 1 for the semantic equations.
An object (type/constructor/recursion) is said to be well-formed, iff its de-

notational semantics are defined. There are many ill-formed objects: Some of
these contain merely syntactical errors, e.g., references to unbound variables.
A more interesting class of ill-formed objects are those involving a non-existent
fixpoint construction. The following example has been known to be ill-formed
since the time of Cantor:

µ s ::= POW s

The following definition has no semantics either. Both the assumption that
s is empty and that s is nonempty lead to a contradiction:

µs ::= s → {}

In any case, the semantic domain of general sets is far too powerful and thus
of no use in automatic verification of type properties. Since the solution space
for recursions are the partial set endofunctors, it is even undecidable whether
a candidate is actually the fixpoint of a given functor transformation. In the
next section, we will present an extremely simplified semantic domain for the
abstract interpretation of type definitions. Though reducing the complexity of
the system enough to obtain computable fixpoints, our model preserves many
interesting properties of the defined types.
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[[Γ ` ]]t : T ′
9 Set

[[Γ ` τ ]]t = Γt(τ)

[[Γ ` f [t]]]t = [[Γ ` f ]]f
(

[[Γ ` t]]t
)

[[Γ ` {}]]t = ∅

[[Γ ` ()]]t = {?}

[[Γ ` t × u]]t = [[Γ ` t]]t × [[Γ ` u]]t

[[Γ ` t + u]]t = [[Γ ` t]]t + [[Γ ` u]]t

[[Γ ` t → u]]t = [[Γ ` u]]
[[Γ`t]]t
t

[[Γ ` t 9 u]]t =
⋃

X∈[[Γ`POW t]]t

[[Γ ` u]]X
t

[[Γ ` t ; u]]t =
⋃

X∈[[Γ`SET t]]t

[[Γ ` u]]X
t

[[Γ ` OPT t]]t = [[Γ ` t]]t ∪ {−}

[[Γ ` SET t]]t =
{

X ⊆ [[Γ ` t]]t | X is finite
}

[[Γ ` BAG t]]t =
⋃

X∈[[Γ`SET t]]t

N+
X

[[Γ ` SEQ t]]t =
⋃

k∈N

[[Γ ` t]]k
t

[[Γ ` POW t]]t =
{

X ⊆ [[Γ ` t]]t
}

[[Γ ` ]]f : F 9 Set 9 Set

[[Γ ` φ]]f = Γf(φ)

[[Γ ` λ τ . t]]f(u) = [[Γ ⊕ {τ 7→ u} ` t]]t

[[Γ ` φ @ r]]f = [[Γ ` r]]r(φ)

[[Γ ` ]]r : R 9 W ; Set 9 Set

[[Γ ` µ (φi ::= fi)]]r = S0

where S0 is the least fixpoint of the functor family transformation Φ, defined
as:

Φ(S)(φi) = [[Γ ⊕ S ` fi]]f

Table 1: Denotational Semantics
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3 Cardinality Classes

Type definitions fall into one of six cardinality classes, all well-known from
standard set theory:

C = {0 < 1 < n < ω < C <  }

See table 2 for the pronounciation of these symbols. Each cardinality class
associates some properties with its member types:

1. A type of cardinality 0 has no instance.

2. A type of cardinality 1 has exactly one instance.

3. A type of cardinality n or greater has more than one instance.

4. A type of cardinality n or less has finitely many instances.

5. A type of cardinality ω or greater has infinitely many instances.

6. A type of cardinality ω or less has a finite extensional representation.

7. A type of cardinality ω or less is recursively enumerable.

8. A type of cardinality C has more than countably many instances.

9. A type of cardinality  is ill-defined.

These properties are not of purely theoretical interest, but have some im-
portant practical corollaries:

1. A type of cardinality 0 or 1 needs no representation in memory at all.

2. A type of cardinality n can be encoded in a fixed number of bits in memory.

3. A type of cardinality ω must be encoded using extensible bit vectors or
pointers.

4. A type of cardinality ω or less induces a computable total order.

5. A type of cardinality C must be encoded intensionally.

6. A type of cardinality  is a programmer’s error.

7. A type of cardinality 0 or 1 with a nontrivial definition is probably a
programmer’s error and should trigger a warning. Consider, e.g., the
following erroneous definition of homogenous lists that has cardinality 0:

hlist [α] ::=
(

α × hlist [α]
)

× ()

The abstract interpretation of type definitions in terms of cardinality classes
is defined as follows:
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0 empty
1 void
n finite
ω discrete
C continuous
 unstable

Table 2: Cardinality classes

+ 0 1 n ω C  

0 0 1 n ω C  

1 1 n n ω C  

n n n n ω C  

ω ω ω ω ω C  

C C C C C C  

       

× 0 1 n ω C  

0 0 0 0 0 0 0

1 0 1 n ω C  

n 0 n n ω C  

ω 0 ω ω ω C  

C 0 C C C C  

 0      

Table 3: Polynomial binary constructors

→ 0 1 n ω C  

0 1 1 1 1 1 1

1 0 1 n ω C  

n 0 1 n ω C  

ω 0 1 C C C  

C 0 1 C C C  

 0 1     

9 0 1 n ω C  

0 1 1 1 1 1 1

1 1 n n ω C  

n 1 n n ω C  

ω 1 C C C C  

C 1 C C C C  

 1      

; 0 1 n ω C  

0 1 1 1 1 1 1

1 1 n n ω C  

n 1 n n ω C  

ω 1 ω ω ω C  

C 1      

 1      

Table 4: Exponential binary constructors

OPT SEQ SET BAG POW

0 1 1 1 1 1

1 n ω n ω n

n n ω n ω n

ω ω ω ω ω C

C C C    

      

Table 5: Monadic constructors
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1. The type constants {} and () are mapped to cardinalities 0 and 1, respec-
tively.

2. The interpretations of the builtin constructors are shown in tables 3–5.

Since the space of cardinality functions C → C is finite, it is decidable
whether a finite family of cardinality functions is in fact a fixpoint of a given
transformation (the abstract interpretation of a recursion). In the remaining
sections of this paper, we shall go further and actually give a computable con-
struction for cardinality fixpoints.

3.1 Monotonicity

In order to compute least fixpoints of recursive cardinality equations, we shall
use a straightforward bottom-up approximation based on [8]. The domain of
cardinality classes C, our interpretation of closed type expressions, is trivially
a CPO (C,≤) with the bottom element 0. Furthermore, the top element  
denotes ill-formedness.

The domain of unary cardinality functions, our interpretation of construc-
tors, can be ordered pointwise to obtain a CPO (C → C,v) with bottom element
const 0:

f v g ⇐⇒ ∀ c . f(c) ≤ g(c)

The last step of abstraction is the interpretation of recursions as monotonic
transformations of (families of) cardinality functions. Since monotonicity is
most naturally formulated for unary functions, the binary standard operations
are treated as families of sections, i.e., partially instantiated in either their
left or right argument with any possible value. Each section of a standard
operation corresponds to a row or column of tables 3/4. Sections are denoted
in parentheses with the uninstantiated argument set to a placeholder .

It is easy to show (using the given tables) that repeated application of most
of the given unary cardinality operations f is monotonic, i.e., x ≤ f(x). There
are two kinds of exceptions:

1. The constant operations (0 × ), ( × 0), (0 → ), ( → 1), (0 9 ),
( 9 0), (0 ; ), and ( ; 0). For these, however, the weak monotonicity
f(x) ≤ f

(

f(x)
)

holds.

2. The alternating operation ( → 0). A recursion involving this operation
and none of the constant operations has no fixpoint. Thus, if such a circle
is detected, the fixpoint approximation can be aborted (i.e., set to  ),
instead of alternating infinitely between 0 and 1.

3.2 Totality

Note that all fully monotonic operations are necessarily strict with respect to
the top element: f( ) =  . Thus the interpretation of  as the ill-defined
cardinality is justified. As a consequence, even though the calculus of recursive
type definitions has partial semantics, the abstract interpretation in terms of
cardinality is total with a one-to-one correspondence between ill-defined set
semantics and cardinality class  .
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3.3 Classes of cardinality operations

The subranges Cc = {0, . . . , c} of C are closed under certain classes Oc of
operations. An operation f shall be called c-faithful, iff Cc is closed under f :

x ≤ c =⇒ f(x) ≤ c

1. All standard cardinality operations except for sections instantiated with
 and the exponential closure operations SET, BAG and POW are C-faithful.

2. The only C-faithful operations that are not ω-faithful are the sections
instantiated with C and the exponential operations ( → ω), ( 9 ω) (but
not ( ; ω)), and POW (but not SET).

3. The only ω-faithful operations that are not n-faithful are the sections
instantiated with ω and the closure operations BAG and SEQ.

4. The n-faithful operations are also called polynomial.

3.4 Short-Cut Recursion

Obviously, abstract interpretation in terms of cardinality classes alone is not
sufficient to deal with recursion. Even the most basic recursive examples exceed
the power of the cardinality calculus presented so far. Consider the recursive
definition of natural numbers:

µ nat ::= nat + ()

If the least fixpoint is approximated näıvely, the cardinality of nat will be
approximated by 0 → 1 → n → n → . . . , and never exceed n. Since we intend
to compute a cardinality fixpoint in finitely many approximation steps, but the
set-theoretic fixpoint takes ω steps to approximate, the näıve approach must
fail.

In order to solve this problem, we need means to detect recursive paths in the
type expressions, i.e., paths that are going to repeat ω times in the fixpoint, and
perform all ω steps at once in the cardinality calculus. Thus, a purely algebraic
notion of type expression terms is ruled out. Instead, we shall formulate a
recursion-capable cardinality inference algorithm based on a coalgebraic notion
of type expression graphs.

Informally, every subexpression in a system of type definitions is assumed to
have a unique node identity i ∈ N. Subexpression nodes are labeled with their
root operation. The number of outgoing edges at each node shall correspond
with the number of arguments of the operation. Furthermore, there shall be a
total order among the edges originating from a single node, reflecting the textual
order of the arguments. A graph representation of the solution for an equation
is easily obtained by mapping the left hand side node onto the root of the right
hand side (see figure 1).

Now we can refine the abstract interpretation by annotating each computed
cardinality with the set of expression identities that contribute monotonically:
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1µ

2::=

3nat 4+

5
()

4+

5
()

Figure 1: The equation and solution graphs of nat

(r → ) (r 9 ) ( 9 r)
(r ; )
( ; r)

( + r)
(r + )

OPTSEQ

SETBAG
POW

0  1 1 1 0 ω  

1 1  ω ω ω ω  

n   ω ω ω ω  

ω   C ω ω ω  

C   C C C   

        

Table 6: Recursive operations

1. The contributor set of a constant operation is empty.

2. The contributor set of a monotonic operation is the union of the root
node identity and the contributor set of the arguments (including the
fixed argument of a section). The pathological operation ( → 0) can be
treated like a monotonic operation in the recursive case, yielding  .

Whenever the identity of an operation node is found in the contributor set of
one of its arguments, there is a recursive subexpression that will be unrolled ω

times in the least fixpoint of the type definition. This recursion must be mono-
tonic: If there was a non-monotonic operation involved, then the contributor
set would have been cleared at that point. Whenever a monotonic recursion is
detected, a different interpretation of the type operation is employed, reflecting
the cardinality effect of ω successive applications of the operation.

Table 6 shows the operations that behave differently in the recursive case.
The meta-variable r stands for a recursive subexpression, i.e., a subexpression
whose contributor set contains the identity of the root node. Operations not
occurring in the table need no special treatment in the recursive case.

Illustrated graphically, the solution is approximated by bottom-up construc-
tion of trees that can be mapped homomorphically onto the circular solution
graph. The recursion handling mechanism takes place whenever the mapping is
found to be non-injective. Then, the two identified nodes, being beginning and
end of a circle, are collapsed and the resulting single node is updated to reflect
the cardinality of ω iterations of that circle (see figure 2).
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0 0

4+

51 0

4+

51

4+

51

0

4+

5ω

Figure 2: Fixpoint approximation for nat

4 Conclusion

We have presented a type definition language that aims at incorporating some
state-of-the-art and highly desirable generalizations into the standard model
of parametric free data types, namely general and mutual recursion and some
advanced type constructors. We have shown that cardinality analysis is the
key to several important properties of the resulting type definitions, including
well-formedness, and how to accomplish terminating cardinality inference by
abstract interpretation in a recursion-aware domain of cardinality classes.

4.1 Future Work

Formal Proof The inferred cardinality results have been validated in a pro-
totypic implementation, but a formal proof of our method has yet to be done.
The topic is still quite new, and we hope to gain insights from future extensions
and generalizations that will help us in formulating a concise proof.

Refinement of Interpretation It is easy to verify that all of the six cardinal-
ity classes described in this paper are indispensable for consistent interpretation
of type constructors. Introducing new classes above C, though of interest to set
theory, is pointless for (constructive) data types. Refining the abstract interpre-
tation domain beyond cardinality might induce classes slightly above or below
ω with different properties, however. This should be a future topic of research,
especially the range of countable but not enumerable types obtained with non-
convex constructors, e.g., general Chomsky grammars or semantic subtypes.

Cofree Semantics The operator µ and its least fixpoint semantics is not the
only way to give semantics to recursive type definitions. There might also be
an operator ν with geatest fixpoint semantics, yielding final coalgebra models of
types. Since final coalgebras tend to behave badly in terms of cardinality, e.g.
ν t ::= t + t is already continuous, the more interesting fixpoint operator might
be µ̄, yielding a submodel of the final coalgebra that contains only instances
with a finite (albeit cyclical) graph representation, a very powerful and natural
model of semantic nets and object-oriented systems. It is not yet known whether
our abstract interpretation approach can be generalized to support such fixpoint
computations at all, and if it does, which refinements are necessary.
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Cardinality and Functorial Semantics The possibility of generalization of
type constructors to full functors (i.e., with a morphism-mapping part) has been
a topic of active research in recent years, see e.g. [5]: Most of the conceivable
type constructors have a generalization to morphisms, allowing the automatic
lifting of operations to composite types. It is not yet known whether cardinality
analysis might also provide a clue to properties of the morphism construction
associated with a type construction.

Further Uses of Cardinality Info There are many more applications for
cardinality information. E.g., a type of class ω or less induces a canonical pretty
printing function. A less trivial application is a special treatment of types of
class 1: By collapsing all of these types into a single canonical void type (), and
by adding a type equation α = () → α, it is possible to eliminate the distinction
between values and functions, and thus between application and composition,
reconciling calulations based on λ-terms and morphisms. This topic is currently
under the authors’ investigation.

4.2 Related Work

There are many theoretical results and areas of application for abstract inter-
pretation of programs. See [4] for a comprehensive treatise. To our knowledge,
there are few examples of abstract interpretation of a type language. However,
we expect this to change in the future, because type languages are becoming
increasingly powerful and actually competing with computational languages in
complexity.

The only related application of cardinality analysis we are aware of is the
static analysis of solution spaces for Prolog queries [1]. This work is about actual
computations and thus about finite cardinalities, whereas we have a statical and
transfinite approach.
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