
TUB-TCI

An Architecture for Dynamic Deployment

of Test Components

Markus Lepper, Baltasar Trancón y Widemann, Jacob Wieland

Technische Universität Berlin, Fakultät IV, ÜBB, Institut für Softwaretechnik und
Theoretische Informatik, Sekr. FR 5–13,

Franklinstr. 28/29, D–10587 Berlin, E-mail: {lepper,bt,ugh}@cs.tu-berlin.de

Abstract The test definition language TTCN-3 is currently under stan-
dardization by ETSI/ITU-T. Its intended field of application is testing
and performance measurement of communication hard- and software.
TTCN-3 does include mechanisms for specifying remote hardware access
and for distributed execution of testing code components.
But for running compiled TTCN-3 code distributed onto distinct nodes
of different vendors an architecture is needed which offers standardized
means for dynamic, program controlled deployment, configuration and
status inquiry of active and passive resources.
TUB-TCI is a proposal for such an architecture, characterized by (1) to-
tally generic definition of component classes, (2) coexistence of standard-
ized (XML based) and specialized (high-speed) communication channels,
(3) a model-based, strictly formal definition given in Z and (4) a simple,
minimized but powerful execution model.
Especially because of the integration of non-standard, high speed data
channels TUB-TCI seems applicable for dynamical routing of real-time
signals in general, beyond the field of test execution.

Keywords: Dynamic Deployment, Conformance Testing, XML based configu-
ration.

1 Design Principles and Features of TUB-TCI

1.1 The TCI problem in general

TCI stands for
”
Test Configuration Infrastructure“ and is a topic discussed by

a recently installed working group of ETSI, continuing the work presented in
[6]. Protocol conformance testing and performance measurement — as far as
communication technology is concerned, but possibly also in other fields — will
increasingly have to deal with heterogenous ensembles of hardware nodes, in
which tests are performed by co-operating pieces of code distributed to distinct
hardware nodes, each of them may be based on very different technologies.

Any compiler, when translating a so called
”
abstract test suite“ (

”
ATS“)

written e.g. in TTCN-3 (cf. [8]) to a collection of pieces of executable code (
”
ex-

ecutable test suite“,
”
ETS“), can easily do this for different execution platforms.

But to really make these code objects co-operate, the pure language definitions
and their semantics do not suffice. Indeed an infrastructure is needed which pro-
vides additional information concerning the concrete set-up, and which allows

 markuslepper.eu

 IS
BN 3

-5
40

-4
01

23
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-40123-7

user data and control information to be passed between different nodes in a
transparent way.

This arises from the following basic contradiction:

– Advanced concepts of testing, like in TTCN-3, provide the means for dy-

namic, program-controlled creating, deleting, configuring and linking test
components. This feature will become more and more important, especially
for automated, batch driven

”
over-night“ tests, as well as for periodically

scheduled, automated in-field
”
online-tests“ in dynamically changing topolo-

gies.
So the actual test code execution needs some information concerning (1) the
specific capabilities and API definitions of the involved hardware nodes, their
current topology and the currently valid set-up of addressing and routing,
and (2) about the creation and configuration commands for certain hardware
resources (timers, ports, local I/O-devices) and the required parameteriza-
tion information, which is specific for the type and vendor of the hardware
device.

– Both requirements conflict with the requirement of abstractness , i.e. that the
same abstract test suite specification and the corresponding compiled code
should be able to run in different hardware settings of divergent topologies:
neither (1) the deployment strategies, which need information on the current
hardware configuration, nor (2) the driver specific parameters should (or
even: can) be contained in the source text of the test program.

– Consequently, there has to be a kind of
”
merging of semantics“: The ETS-

code will provide certain pieces of information, concerning e.g.
”
abstract

timers“,
”
abstract ports“, etc., which are complete in the sense of the seman-

tics of the abstract test suite, but only more or less sufficient w.r.t. the needs
of the addressed particular hardware drivers. They must be completed by
the TCI infrastructure, using some strategic knowledge concerning the con-
crete set-up, and passed to the different

”
drivers“ of the selected hardware

node, which are the only subsystems able to really perform the allocation
and configuration.

Currently all these issues are addressed by the hand-coding of so called
”
test

adapters“, pieces of code which realize the mapping from the abstract semantics
of e.g. TTCN-3 to the concrete interfaces of the concrete hardware setting. These
code objects can be re-used only in a limited way, so the work has to be done
from scratch for each family of test situations. This work is a source of further
possible errors in the test process, and can hardly be considered intellectually
challenging engineering.

A central intention of TUB-TCI is to relieve the implementor of the test
adapter by some ability of self-organization of the underlying infrastructure,
establishing means for declaring the additionally needed pieces of information in
a generic way.

 markuslepper.eu

 IS
BN 3

-5
40

-4
01

23
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-40123-7

1.2 Basic Paradigms and Current State of TUB-TCI

These are the issues which must be addressed by any TCI, and TUB-TCI is a
possible solution proposed by the authors. Its central design goals are

– Versatility,
– Robustness, and
– Precise Specification.

It may further be characterized by

– Co-existence of different paradigms, e.g. central and distributed knowledge,
unified and specialized communication channels.

– Being equally well suited for interactive and batch driven testing.
– Preserving referential integrity.

TUB-TCI currently exists as a complete model-based specification (cf. [3]).
In contrast to the official TCI specification by ETSI (cf. [4]), which concentrates
on defining APIs callable by the executable test suite, our approach also defines
the behaviour of the single subsystems and the rules of their co-operation, and
thus specifies the behaviour of the total system.

There are severe advantages of such a model based specification which uses
some abstract but (potentially) executable language:

– It allows to concentrate on the intended functionality and its realization
by state transitions and message interchange operations. In contrast, when
using a concrete programming language for modeling, i.e.

”
implementing“,

more than half of the text would have to deal with the specific idiosyncratics
of this language, e.g. encoding of type sums, process scheduling, memory
management etc.
So the specification text turns out to be much shorter and clearer than
the text of a conventional implementation, but nevertheless is a kind of
implementation. So e.g. the grade of robustness of the rules could be tested
by paper-and-pencil evaluations, in which human intention simulated the
behaviour of

”
malicious“ test components.

The final translation of the mathematically defined state transitions (and
the pure functional auxiliaries) into a conventional programming language
can in most cases be done in a rather straight-forward way. Here any pro-
gramming language and any operating system can be chosen, since the (non
time-critical) configuration information is exchanged as standardized XML
fragments.

– A model in an abstract, mathematically founded language should allow a
wider and deeper discussion in the community, since basic mathematics are
a language known to every engineer and project manager, — independent of
her/his experiences with distinct programming languages.

– If the appropriate tools for the chosen modeling language are available, exe-
cution (

”
simulation“) and tests can be performed on the mathematical model

 markuslepper.eu

 IS
BN 3

-5
40

-4
01

23
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-40123-7

immediately. Even automated verification of certain properties of the spec-
ification are possible, using model-checking techniques, which is practically
impossible with general-purpose programming languages1.

TUB-TCI is intended as a base for discussion. While being complete, con-
sistent and ready to work, principal decisions do — of course — have some
alternatives, and we do expect revisions when creating the first implementation.

The project has already proved that it is possible to define the behaviour
of a complex and generic architecture completely through all system layers and
all execution phases by precise mathematical means, provided that the level of
abstraction is chosen for each system layer appropriately.

1.3 Principles of the Architecture

TUB-TCI assumes distributed testing to be performed by collaboration of dis-
tinct subsystems , hosted on the same or on different hardware nodes. Each test
session is an alternating sequence of preparation phases (TPrep), in which com-
ponents are installed and hardware resources allocated, and test execution phases
(TRun), in which the behaviour of the total system is under control of the run-
ning

”
executable test suite“. The main issue of any TCI design is that the state

of the whole system is dynamic, that is, allocation, installation and control of
components may happen under program control, i.e. in TRun.

TUB-TCI does not specify any strategic knowledge needed for deployment
decisions, nor does it define any concrete classes of devices. However, it pre-
cisely defines the generic means for

”
installing“ these pieces of information into

a system, — the former by run-time services requested or received by a
”
test

manager“, the latter by a formalism for declaring new device classes.

TUB-TCI is specified by giving its operational semantics as a collection of
transition rules. Most of these involve two subsystems, thereby defining the pos-
sible message passing . These rules and the data space they operate on are given
as Z formulae2. Table 1 completely lists all services offered by all categories of
subsystems.

All message formats are given as Z schemata, too. As soon as message passing
crosses the boundaries of hardware nodes, it is implemented as an exchange of
XML fragments. For implementation or practical standardization some canonical
representation for Z schemata as XML schemata will have to be chosen. The Z,

1 Due to the limitation of resources, these goals could not be addressed in our project
and are left to future work.

2 The notation used is indeed a derivation from Z: Strict requirements needed for
the mathematical foundation of the Z semantics could be discarded, so that some
shorthand notations (e.g. for type sums, step semantics, parallelism, reflection, i.e.
converting schema definitions from/to data values describing schemas, and call of
external driver functions) could be added for the sake of readability.

W.r.t. the work of the authors, the appropriate structure and semantics of the
meta-language is indeed a central topic of research on its own.

 markuslepper.eu

 IS
BN 3

-5
40

-4
01

23
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-40123-7

and not the XML representation is first-class resident in the TUB-TCI specifica-
tion, because the dynamic semantics can only be formulated in the former.

TUB-TCI is minimal , as it defines the minimal required, specialized subset of
the functionality of an

”
object broker“, a

”
routing mechanism“ and a

”
commu-

nication protocol“. So TUB-TCI indeed does contain a
”
micro-CORBA“,

”
micro-

IP“ and a
”
micro-TCP“. This does in no case imply that we want to re-invent

existing technologies, — contrarily: the state transitions specified on these lay-
ers of TUB-TCI can easily be mapped on existing implementations coming from

”
large“, general purpose implementations (TCP/IP, CORBA), or can be imple-

mented in few lines of code from scratch.
Because of this minimality, the specification of TUB-TCI does span the whole

range of architectural layers, from top-level declaration of
”
semantic types“ down

to the lowest level containing the (loosely specified) primitive bus driver com-
munication handshakes.

The architecture consists of the following layers:

– Basic node initialization and communication mechanism.
– Meta-Services for defining new actor classes and their access modes.
– Runtime services for creating, configuring and destroying active and passive

entities.
– Runtime services for user data transmission.

2 Subsystems forming a TUB-TCI setting

In TCI it is assumed that a multitude of hardware nodes co-operate. These nodes
are connected by communication channels of widely divergent technologies. On
each node there is a

”
testing sandbox“: Parallel to all other activities running on

a node, this sandbox contains all testing or measuring code, which is controlled
by TCI.

All activities in TUB-TCI happen as Service Requests between two subsys-

tems , which are implemented by message exchange. We define different categories
of such subsystems, the most important of which are characterized as follows:

2.1 TM = Test Manager

Even in case of distributed execution, testing in practice will always be controlled
by one central instance, which launches, starts and stops the diverse test phases
and calculates the intermediate and final verdicts and results. This is true for
batch driven as well as for interactive test execution.

Such a central instance is modeled by one single instance of the
”
Test Man-

ager“ (TM) category of subsystems. A TM must be
”
external“ to each TCI con-

cept, as its behaviour should not and cannot be specified therein.
Contrarily, the currently active TM is an arbitrary program, of which only

two aspects are specified :
(1) Each TM is an active component issuing service requests for installing

and controlling other active or passive components (i.e. it is a subclass of the

 markuslepper.eu

 IS
BN 3

-5
40

-4
01

23
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-40123-7

Actor subsystem, and must fulfill the role of an RBD, see below, section 2.4.
Additionally it may act as signal drain, i.e. an RBQ, see below section 3.2.2).
More precisely: The TM is the only initially active component, and as such the
source of all other activities in a TCI system.

(2) A TM offers only one single service called
”
decideNode()“, which, given

an indication for the class of which a new component shall be created, together
with an appropriate parameter set, delivers an indication for the hosting node
of this new component and a (perhaps) modified parameter setting.

So TM is specified only as being the subsystem containing all deployment
strategies and the total routing information, — the implementation of both is
(currently) outside the scope of each TCI.

2.2 CAS = Central Access Server

As it is with TM, there is always only one single instance of CAS in each TCI
setting. Contrarily to TM, the behaviour of CAS is totally specified by TUB-TCI.

The (single instance of) CAS caches all deployment information calculated
by TM, calculates unique IDs for all newly created objects of global scope and
holds a catalog of these for answering the corresponding inquiries, controls the
sequentialization of reset() commands, keeps track of the initialization state of
all nodes and gathers all verdict and error messages for passing them to TM.

In contrast to TM the CAS must be hosted on a node which is reachable from
all other nodes (c.f. section 3.1)3.

2.3 NodeS = Node Server and Factories

On each node of the TCI setting there is exactly one Node Server running. The
NodeS has total control of the testing sandbox of its hosting node, in which all
test components will be living. It is also responsible for bootstrapping of the
underlying basic communication layer (Trans, see section 2.5) and its routing
information. Furthermore, it is the recipient for all DOcreate()and DOdelete()

commands, which install new subsystems on this node.

For really performing the creation, the NodeS delegates DOcreate requests
for all new subsystems of a certain class to the corresponding Factory. There
is one factory running on each node for each class of subsystems which can be
created on this node.

2.4 Actors = Dynamically Created Active and Passive Subsystems
(Components)

All subsystems which can be dynamically created or allocated are subsumed as

”
Actors“. This includes hardware resources (IO ports, timers or their respective

drivers), code images loaded onto a distinct node, and also running code, e.g.

”
jobs“ or

”
threads“, created by instantiating parts of these images.

3 Of course the node hosting the CAS must also be able to reach the node hosting the
TM.

 markuslepper.eu

 IS
BN 3

-5
40

-4
01

23
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-40123-7

Actors realized by active running code can act in two different roles, an active
and a passive one, called RBD and RBQ resp.4

RBDs are the only
”
user code“ running in a TUB-TCI environment and the

only sources of activity.
The passive RBQ interface is offered by all those components which can act

as signal drains , that is they can consume a data stream generated by some
other hardware Actor or by some running RBD.

2.5 Trans = Inter-Node Communication and Node Initialization

As induced by the TTCN-3 language, on
”
user data level“ any TCI architecture

must support synchronous as well as asynchronous communication. Furthermore,
on

”
system level“ communication necessary for component control and configu-

ration must be realized.
Both levels of communication are mapped to a basic layer called Trans, which

realizes the (small) necessary portions of
”
data link“,

”
transport“ and

”
network“

layer of the ISO-OSI model.
We support two primitive communication acts: unsolicited,

”
UDP-like“ data-

grams, and solicited datagrams, i.e. one request and one single response.
When sending an unsolicited datagram, control returns to the sending compo-

nent code immediately. When sending a solicited datagram, the communication
is synchronous. A time out duration value has to be given and control returns
to the sending code either with the return message or with a timeout indication.
A central feature yielding the robustness of TUB-TCI is that there is only one
single source for time-out generation: the Trans subsystem of the node hosting
the client.

3 Scenarios of Dynamic Behaviour

3.1 Node Topology, Node Initialization and Routing

The hardware nodes forming a TCI setting must be connected by some com-
munication channels. It is not required that each such channel is bi-directional.
It is required, however, that each node has at least one input and one output
channel, and that the node hosting the CAS is initial and final, i.e. can reach
any other node and is reachable by any other node.

When powering up (the testing sandbox internal to) a distinct node, this
node is in an uninitialized state. The only function it performs is listening
on dedicated ports for a loadRouting() service request. This message contains
(1) the assignment of one globally unique identifier for this node (NodeId), (2) a
routing table indicating for each NodeId the bus driver and bus address, if the
corresponding node is directly reachable, or the NodeId of the node which is to
be used as a gateway, and (3) a routing table assigning a set of NodeIds to each
broadcast group.

4 The names RBD and RBQ are historically determined, cf. [6], and stand for
”
Runtime

Behaviour / Dynamic“ resp.
”
Runtime Behaviour / Queue“.

 markuslepper.eu

 IS
BN 3

-5
40

-4
01

23
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-40123-7

Table1 Offered Services

TM called by CAS : decideNode()

CAS called by TM : CASreset()

bootNodes()

called by RBD : getGlobalParameter()

create()

delete()

setverdict()

called by Trans : lookup()

called by Factory : registersubactors()

deleted()

desmudge()

NodeS called by CAS : reset()

loadRouting()

sendHdwStateInfo()

startsession()

stopsession()

DOcreate()

DOdelete()

HScreatelink()

HSregisteroutlink()

Factory called by NodeS : DOcreate()

DOdelete()

Actor called by RBD : setconfigparams()

getconfigparams()

RToperation()

RBQ called by QAS : RToperation (putQ())

HSputQ()

QAS called by RBD : subscribe()

unsubscribe()

HSsubscribe()

HSunsubscribe()

called by Actor(-demon/-irqHdl) value event()

HSvalue event()

Trans called by Trans (= interface from/to Bus Adapters) :

deliver()

called by Client (=all but RBQ) : req()

delivered to Server : service()

called by Server : reply()

delivered to Client : answer()

back door called by client : BDopen()

interface called by hosting node of server : BDregisterServer()

(≈ TCP) called by client and server : BDread()

BDwrite()

BDclose()

 markuslepper.eu

 IS
BN 3

-5
40

-4
01

23
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-40123-7

Figure1 Subsystems and Collaboration Diagram for creating a new actor

RBD

CAS

RBQ

TM

NodeS

Actor

Factory

1

2

3

4

5

flow of requests ...of replies realtimedirect creation
 ("new()")

A

B 6

7

89

©1 – ©9 : Sequence of Requests/Replies for creating an Actor.
©A : Run-Time Control on Actors
©B : Real-Time Signal Flow from Spontaneous Signal Sources.

The initialization and re-initialization procedures can be rather critical and
complicated, depending on the topology of the network: Direct confirmation of
successful initialization or reset may not be possible until third nodes are initial-
ized, which are needed as gateway to reach the CAS node. Figure 2 just wants
to give an impression how complicated the correct schedule of init-commands
(upper sequence in the figure) and reset-commands (lower sequence) can turn
out, and that in a complicated topology both schedules are neither identical nor
just simply inverse.

Furthermore the initialization sequence may have to consider latency require-
ments. The concrete schedule of loadRouting() and reset() messages requires
strategic knowledge and is left to the TM, external to the TUB-TCI specifica-
tion. The specification does require, that every reset() must be distributed to
all nodes in the setting, so that only a total reset is legal for sake of robustness.

3.2 Inter-Component Communication

On application level, i.e. from the viewpoint of a compiled TTCN-3 code and its
runtime library, runtime communication happens between Actors, i.e. dynami-
cally created components.

We distinguish two totally disjoint flavors of communication, each of which
can be realized by two totally different mechanisms:

 markuslepper.eu

 IS
BN 3

-5
40

-4
01

23
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-40123-7

Figure2 Sequences of Initialization (©) and Reset (X) in a non-trivial Network
Topology

CASNode

CASNode

3.2.1 Single-drain communication Single-drain communication channels
are related to one single actor which is the target of all messages. These mes-
sages are operation control commands issued by a parallel running component.
Examples are: start,stop and launch commands of timers, write commands
to outgoing data ports etc.

The corresponding messages can be sent solicited or unsolicited.

The timing of events in these channels is typically irregular: Multiple active
components (RBDs) independent from each other can send messages to one single
drain spontaneously.

3.2.2 Single-source communication Single-source channels are related to
one single actor which is the source of all communication. They are mainly used
for realizing a stream of user data, e.g. ticks generated by a timer or incoming
messages received by a port.

The corresponding messages can only be sent unsolicited.

The frequency of these messages is often regular . More than one listener can
subscribe a distinct source, and will from then on be notified of each event by
their

”
RBQ“ interface, until they unsubscribe the channel.

Both kinds of communication can be realized in two ways:

 markuslepper.eu

 IS
BN 3

-5
40

-4
01

23
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-40123-7

3.2.3 User level communication by service requests The first possibility
of runtime user level communication is realized by mapping it to the standard
service request mechanism:

In the single-drain case an RToperation() message is sent by the emitting
RBD to the target Actor which shall be controlled or configured. The argument
of this message is a further schema representing the distinct action to perform.
All possible real time control messages and their formats are defined with the
class of the target Actor, see section 3.3.

In the case of single-source the RBD of the Actor sends a subscribe() or
unsubscribe()message to a subsystem called QAS(= Queue Access Server)5.
This message is parameterized with the id of the Actor the outgoing data stream
of which shall be consumed.

The driver of this (passive) component will simply generate a single value event

message to QAS each time it generates or receives a data event.

On the other side the Actor the active code of which performs such a subscrib-
ing must also implement the passive RBQ interface. This means that the among
the set of RToperation() it understands there must be the putQ() command,
which pushes the data into its data input queue.

The scheduling and dispatching of all these messages is done automatically
and totally dynamic by the operational semantics of TUB-TCI. The signal flow
will always be minimized in so far as each node hosting a subscriber and/or
needed as a gateway will only receive one single copy of each data event.

All data in this flavor of communication is encoded as an XML object, which
is derived from the corresponding schema defined with the Actor Class. So there
is unlimited compatibility: Each RBQ can subscribe each source, and one single
RBQ can subscribe multiple sources simultaneously, de-multiplexing the incom-
ing data using the tags contained therein.

3.2.4 User level communication by High Speed Channels Secondly
there is the possibility for a given node and its factories to offer specialized high

speed channels (HS-channels).

These are communication channels which bypass the Trans layer, but are
defined directly on

”
driver level“. In contrast to the

”
normal“ communication

they may be based on specialized hardware links between nodes (e.g. time slot
busses), may use specialized addressing protocols and transmit binary coded

data, maybe in a proprietary format. Both flavors of communication (single-drain
component control or single-source data stream consumption) can be realized by
HS-channels.

Their intended purposes are (1) the monitoring of data with high bandwidth
generated on a external node, and (2) the transmission of single events which
should reach the target with minimal latency.

5 For sake of this paper, QAS can be considered to be one single virtual subsystem,
which is directly reachable for any RBD. Indeed it will be implemented on each node
as part of the node’s NodeS.

 markuslepper.eu

 IS
BN 3

-5
40

-4
01

23
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-40123-7

Figure3 Creation of HsLinks / Variants of HsLinks determined by the
underlying Technology

HS
Bus
Adapter

a=adapter

b=busadr

(CAS)

(CAS)

ACT

"socket" type

"broadcast" type

"timeslot" type

c=channel

RT Data

on/off control

 (e.g. CAN bus)

Bus
Adapter_IN

HS

The principle of total dynamic configuration and scheduling naturally contra-
dicts these purposes. So here we have chosen a different strategy: All HS-channels
can (and should) be allocated and configured by the TM in advance. When link-
ing and loading the compiled code it has to be parameterized with the IDs of
the HS-channels corresponding to the source level communication statements.

Only in those cases where the HS-channel is bi-directional, the HSsubscribe()
and HSunsubscribe() messages issued by the consumer do have an effect: This
effect is just

”
switching on and off“ the data stream from the sending node, as

soon as the first consumer subscribes or the last consumer unsubscribes. This
back channel should of course be implemented also on driver level for sake of
optimal performance and lowest latency.

Figure 3 tries to depict that the main achievement of TUB-TCI lies in the
abstraction from the different flavours of low-level communication (many-to-one,
one-to-many, etc., as depicted in the right column of the figure), and from the
different way of addressing the nodes. The left column shows the typical two-
stage approach for establishing HS-channels by the CAS (controlled by strategic
knowledge of the TM): First the

”
logical in-ports“ are allocated, thereby resolving

 markuslepper.eu

 IS
BN 3

-5
40

-4
01

23
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-40123-7

all specific requirements of the lower communication layer. So in a second step
the concrete connections into these ports can be established in a uniform way.

3.3 Actor Class Declaration and Instantiation

As mentioned above, the declaration of the classes of which Actors can be created
on a given node is outside the scope of TUB-TCI. Even most basic foundation
classes like

”
active code“ or

”
thread“ are unknown to this layer of architecture.

In fact only the mechanisms for defining and deriving classes is part of the TUB-
TCI.

Each Actor Class is given as a Z schema, and declares for each instance (1) the
collection of configuration parameters and (2) the runtime operations applicable.
The latter is just a free type describing the possible control messages the Actors
of this class understand during runtime. The former gives for each parameter a
basic type, arbitrarily chosen constraints on the possible values, and the

”
update

allowance“, which describes if this parameter cannot be set at all (CO and RO),
can be written once when creating the Actor(WI) or re-written during setup time
(RW) or can be changed even at runtime (RWRT).

3.4 Example

Let us illustrate this mechanism by the example of a
”
timer“ Actor Class :

First we define the configuration parameters and the real-time operations
separately6 :

PI Timer

minResolution : Duration
curResolution : Duration
maxValue : Duration

RT Timer ::= start

| stop

| reset〈〈Duration〉〉

| read V timerval〈〈Duration〉〉

No we use these both data types and build a schema which includes the schema
ActorClassDescription:

AC Timer
ActorClassDescription

PI ⊂ unpack PI Timer

RT = RT Timer
PI ("minResolution") .mode = CO

PI ("maxDuration") .mode = CO

6 Please note the slight enhancements and weakenings of the Z notation, used for
purpose of readability: The notation α V β simultaneously defines one case of a free
type used as service request (α) together with the case (β) of another free type,
representing the corresponding reply. This correspondence is considered informal,
i.e. only for reader’s information. The operation

”
unpack“ belongs to our reflection

tools: it takes a schema and lifts it to a data structure.

 markuslepper.eu

 IS
BN 3

-5
40

-4
01

23
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-40123-7

Now we can derive the definition of a special timer, offering additional oper-
ations and requiring more parameters :

PI Timer 4711 == [maxMarkerCount : N]
RT Timer 4711 ::= setMark(N)

| readMark(N) V timestamp(Time)
AC Timer 4711 == [extend(AC Timer ,PI Timer 4711,RT Timer 4711)

| PI ("maxMarkerCount") .mode = WI

]

At last we declare a factory, i.e. a concrete
”
driver“, which probably will

be supported only on nodes of dedicated node classes. We simply build a new
schema which combines (1) the schema of the most specific actor class for which
the factory is an implementation, (2) the generic Factory schema (cf. figure 4),
and (3) further constraints on the configuration parameters.

FACT timer x4711 2.2 runs on Tektronix 0815

AC Timer 4711

Factory

V minResolution = sec(0.001)
V maxDuration < sec(3600.00)
PI ("curResolution") .mode = RW

PI ("curResolution").default = sec(0.01)
sec(0.001) ≤ V curResolution ≤ sec(0.1)
∃n : Z • V curResolution = n ∗ sec(0.001)
V maxDuration / V curResolution ≤ 231 − 1

Please note that this schema imposes real dynamic constraints on the con-
figuration parameters’ values, since the value of maxDuration varies depending
on the value of curResolution.

4 Related and Future Work

4.1 Related Work

Our work on TCI is based on early industrial approaches as found in [2], and did
have some influence to the recent development of TRI ([6]), a communication
protocol which can be interpreted as one fixed instance of a TCI, but without
formal definitions of behaviour.

There are numerous significant theoretical works concerning the algebraic
aspects of distributed testing ([1], [5], [9]).

 markuslepper.eu

 IS
BN 3

-5
40

-4
01

23
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-40123-7

Figure4 Basic definitions for Defining Actor Classes

ParameterUpdateAllowance ::= CO | RO | WI | RW | RWRT

CO < RO < WI < RW < RWRT

ParameterDescription

type : TYPE
updatemode : ParameterUpdateAllowance
value : type
allowed : P type
default : type ∪ {⊥}

default ∈ allowed ∨ default = ⊥

ParameterDescriptionList == IDENT 7 7→ ParameterDescription

ActorClassDescription

PI : ParameterDescriptionList
RT : FREE TYPE

Actor Factory

ActorClassDescription

-> create : LUID × pack PI → GR

-> delete : LUID × LUID → GR

-> changeParamas : LUID × pack PI → GR

-> dumpParamas : LUID → pack PI

-> executeRtOperation : LUID × RT → DATA

// GR = General Result data type, LUID =
”
local unique id“ = a unique id for a

dynamically created Actor.

On the other side there is, to the best of our knowledge, only one published
approach concerning practical implementation: the industrial implementation of
TSP1[7], as part of the TINA project.

Our approach is somehow in the middle, — it does not cope with reasoning
as the former, but it does contain precise specification of operational semantics
and genericity, both lacking in the latter.

 markuslepper.eu

 IS
BN 3

-5
40

-4
01

23
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-40123-7

4.2 Next steps
As mentioned above, currently TUB-TCI is a concept meant as a base for dis-
cussion. A first implementation is planned as part of a research project, and will
certainly lead to modifications.

Additionally there are higher, lower or parallel layers of a possible TCI archi-
tecture, which still have to be specified:

– The Factories corresponding to these classes are currently assumed to be

”
hard wired“ into the Node Server of the hardware node.

This corresponds to the fact, that our specification does not yet
model nodes, node classes and node vendors: in our declaration exam-
ple on page 14 the corresponding dependencies are only given infor-
mally by choosing the

”
human readable name“ of the factory to be

”
FACT timer x4711 2.2 runs on Tektronix 0815“.

An ubiquitous, standardized semantic basis for modeling and implement-
ing (!) these relations probably will need the allocation of

”
ASN.1 informa-

tion objects“, cf. ISO/IEC 8824-2, i.e. entities of world-wide unique meaning
assigned to vendors by a standardization board.

– This also applies to the binary data encoding used for the HS-Channels.
Currently the data encoding is totally unspecified and the correct

”
routing“

from sources to sinks is left to the informal knowledge of the TM. Different
encodings, even vendor-specific, could be indicated by

”
information objects“,

so that Actors realizing encoding converters could be inserted automatically
and correctly w.r.t. typing.

References

1. Mohammed Bennattou, Leo Cacciari, Régis Pasini, and Omar Rafiq. Principles
and tools for testing open distributed systems. In IFIP TC5 12th International
Workshop on Testing Communicating Systems. Kluwer Academic Publishers, 1999.

2. Generic Compiler/Interpreter Interface. INTOOL CGI / NPL 038 (v.2.2), december
1996.

3. Markus Lepper. TUB-TCI — A Generic Architecture for Dis-
tributed Test Execution. Technical report, Berlin, September 2002.
http://uebb.cs.tu-berlin.de/papers/published/TR02-08.ps.

4. TTCN-3 Control Interface (TCI). Technical report, ETSI ES 201 837-5 , to appear
2003.

5. Maria Törö. Decision on tester configuration for multiparty testing. In IFIP TC5
12th International Workshop on Testing Communicating Systems. Kluwer Academic
Publishers, 1999.

6. TRI — the TTCN-3 Runtime Interface. Technical report, ETSI TR 102 043 V1.1.1,
Sofia-Antipolis, April 2002.

7. Test Synchronization Protocol 1 Plus (TSP1+) Specification. Technical report,
ETSI TC-MTS, ETSI Standard ES 201 770, Sofia-Antipolis, Jan 1997.

8. Methods for Testing and Specification (MTS); Part 1: TTCN-3 Core Language.
Technical report, ETSI ES 201 837-1 (V1.0.11), Sofia-Antipolis, May 2001.

9. Andreas Ulrich and Hartmut König. Architectures for testing distributed systems.
In IFIP TC5 12th International Workshop on Testing Communicating Systems.
Kluwer Academic Publishers, 1999.

 markuslepper.eu

 IS
BN 3

-5
40

-4
01

23
-7

http://markuslepper.eu
http://www.worldcat.org/search?q=3-540-40123-7

