
A Type System for TTCN-3

Jacob Wieland
Baltasar Trancón y Widemann

Markus Lepper
{ugh,bt,lepper}@cs.tu-berlin.de

Technische Universität Berlin
FAK IV / ISTI / ÜBB

Franklinstr. 28 / FR 5-13 / 10587 Berlin

Abstract. The introduction of TTCN-3 into the world of imperative
protocol compliance testing is an important step towards the applica-
tion of formal methods in protocol testing. Since the TTCN-3 standard[2]
comes without an explicitely defined type system, this paper attempts
to close this gap in the specification, permitting discussions in the com-
munity and the evaluation of compilers on a more exact basis.
The type system presented in this paper has been implemented in the
TTthree (TTCN-3 to Java) compiler.

TTCN-3, compiler construction, type system

1 INTRODUCTION

The introduction of TTCN-3 into the world of imperative protocol compliance
specification and testing is an important step towards the application of formal

methods in protocol testing. Besides formal methods being a field of research and
academic culture on its own (and maybe a source of horror for the practitioner)
indeed it simply means consequent application of mathematics whenever it seems
promising [8].

While it is possible to give exact semantics only to certain variants of graph-
ical languages1, in the field of textual languages the mathematical devices are
well understood, mature and even frequently applied in industrial practice (e.g.,
parser generators, attribute grammar systems; see [1]). Therefore, the transition
from the graphical / tabular format of TTCN-2 to the programming language
like text based source format of TTCN-3 is a deserving step.

A protocol specification is a set of rules describing the set of all permitted
behaviors of a system as sequences of ingoing and outgoing PDUs. In the im-

perative approach, as in TTCN-3 and its predecessors, this is achieved by giving
“examples”: Sequences of stimuli sent to the SUT are defined, together with

1 e.g. consider that the problem of recognizing graph isomorphism is not yet, and may
never be, solvable efficiently in general.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

the allowed reactions of the SUT. These are compared to the actually received
reaction by pattern matching or, more generally, constraint application.

The disadvantage of this approach is obvious: In contrast to formalisms with
denotational semantics it is hard work to find out whether a given test suite is a
complete cover of possible classes of situations, or even if it touches all important
cases at least once. The advantage is immediate executability, which the other
specification techniques do not provide in general.

So each TTCN-3 text has a twofold meaning: It is intended to be a human-
readable specification, and it is a program which can be executed for automized
testing of hardware and software.

For the former purpose, i.e., simplicity of understanding, TTCN-3 has been
designed to resemble common and established imperative languages like C and
PASCAL in multiple ways. For the same reason, modern and more complex
namespace concepts, such as overloading, information hiding or inheritance, are
not supported. On the other hand, to allow for more abstraction from the im-
plementation details of test systems, some sorts of active entities (components
with ports as well as timers) along with an SDL[6]-like, message-based commu-
nication model have been added to the language for the specification of parallel,
synchronous and asynchronous behavior.

While for the latter purpose of automatic executability it is sufficient to
implement a compiler on an intuitive basis, the claim of being a specification

language does require to give exact semantics to the language. A first step to-
wards this goal is a type system, which gives a kind of coarse semantics to every
construct of the language’s syntax. It allows a priori detection of some classes
of erroneous run time situations and undefined expressions.

The aim of this report is to present such a type system for TTCN-3 which
will allow to define the denotational semantics of that language, laying the basis
for mathematical reasoning about specifications formulated in TTCN-3. When-
ever automized reasoning and processing of testsuites will appear on the agenda
(as done for TTCN-2 by [7]), as much static information as possible should be
available.

First, we define an expression language for TTCN-3 types, values and oper-
ations2. Then, we introduce the different kinds of type compatibility and after-
wards describe the subtyping relationship.

As means of denotating mathematical structures we use the algebraic lan-
guage Opal [9]. The most important constructs used in the following are shortly
explained in Appendix B.

2 We allow slight abstractions and comprehensions concerning some idiosyncratic dis-
tinctions found on the syntax level of TTCN-3.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

2 Types of TTCN-3

The type system induced by the TTCN-3 standard is characterized by the fol-
lowing features:

– parametrization of types and data3,
– usability of data types as template values4,
– semantic subtypes (typing information available only at run time),
– disjunctive types,
– the special value omit implicitly added to any type definition.

The types in TTCN-3 can be categorized into value types and behavioral types ;
the former with structural5, the latter with operational subtype compatibility.

3 Expressions of TTCN-3

– The expression language of TTCN-3 has three categories: types, values and
operations.

type expression ==
type(expr : type)

value(expr : value)

operation(expr : operation)

– The type expression language can be described by the following data type6

type type ==
all void type

bool verdict timer integer float

character(kind : string kind)

struct(kind : struct kind , fields : array[declaration])

list(kind : list kind , element type : type)⋃
(types : array[type]) -- disjunction∏
(types : array[type]) -- product

io(kind : io kind , input : type , output : type)

modified(modifier : modifier , original type : type)

constraint(original type : type , predicate : expression)

runtime(condition : constraint , known type : type)

3 Although it would have been easily feasible, the designers of TTCN-3 restrained from
applying parametrization consequently to subtypes and behavioral types.

4 Template matching mechanisms are a field of research all of its own so this report
will mostly abstract from any specifics in this area.

5 Here, the standard is more restrictive than necessary from a mathematical viewpoint;
e.g., a set of type is not considered compatible with corresponding record of type.

6 The leaving out of the constructors for the signature and enumerated types of
TTCN-3 is intentional. They can be modelled by using the types defined here, but
this is outside the scope of this paper.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

type string kind == bit hex octet char universal

type struct kind ==
record set union mapping component

type list kind == string record set

type io kind == generic behavior port

type modifier == optional template constant variable

type declaration == : (name : identifier , type : type)

– The value language describes numbers, lists, strings, structures, templates,
generics and behaviors (procedures 7), as well as undefined, void and omitted
values.

type value ==
number(kind : type , number : number)

list(elements : array[expression])

string(kind : character , string : string)

mapping(fields : array[definition])

template(template type : type , predicate : expression)

generic(args : array[declaration] , result : expression)

behavior(runs on : type , statement : statement)

null nothing omit

type definition == := (name : identifier , value : expression)

– The operation language contains declared identifiers, generic application (in-
stantiation), as well as item and field selection operations 8 (for lists and
structures respectively), evaluation of templates to unique values and cre-
ation of components.

type operation ==
id(id : declaration)

@ (operation : expression , argument : expression)

[](list : expression , index : expression)

. (operand : expression , selector : identifier)

isvalue(operand : expression)

valueof(operand : expression)

create(component type : type)

4 Subtyping

Typical protocol testsuites contain numerous types and even more data tem-
plates. To keep their definition manageable, TTCN-3 supports generic templates
and structured types. Furthermore for generalization, abstraction or compatibil-
ity purposes it is often desirable or sometimes even necessary to use values of
one type as values of another type. This induces a subtyping relation.

7 Note: a TTCN-3 function is represented as a generic yielding a behavior
8 The isvalue operation subsumes both the ischosen and ispresent operations of

TTCN-3

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

4.1 Subtyping For Structured Types

Concerning the structured types of TTCN-3, one type is a subtype of another,
if both types have equal9 toplevel structure and if the types of all aggregated
components of the first type are subtypes of their counterparts in the second10.

Fig.1 Generic Record Types and Templates

type record GR1(T1, T2) { T1 a, T2 b optional }
type record GR2(T1, T2) { T1 b, T2 a } // GR2(T1,T2) is also GR1(T1,T2)

type GR1(integer, integer) R1; // R1 is GR1(integer, integer)
type GR2(integer, integer) R2; // R2 is GR2(integer, integer) is also R1
type record R3 { integer c, integer d } // R3 and R2 are equivalent

template R1 r1(integer i1, template integer i2) := { a := i1, b := i2 }
template R2 r2(integer i1, integer i2) := { i1, i2 }
template R1 r3 := r2(1, 2); // correct
template R2 r4 := r1(1, 2); // warning, but correct
template R3 r5 := r1(1, *); // warning and runtime-error

template R3 r6 := r2(1, 2); // correct

Figure 1 defines two generic record types GR1 and GR2 and two instances
of these R1 and R2. It also defines a another record type R3. R1, R2 and R3 all
have the same structure and it is possible to use every item of type R2 or R3 as
items of the other one or of type R1. Those values of type R1 where the second
field is omitted can not be used as values of type R2 or R3, but it is possible for
all other values.

4.2 Operational Subtyping

If two entities allow the same operation to be applied to them yielding a result
of the same type, they are operationally compatible in regard to that operation.
If all entities of one type are operationally compatible with all entities of another
type in regard to an operation then these types are operationally compatible in
regard to that operation. Finally, if one type is operationally compatible with
another type on all that type’s operations, then the first type is a subtype of the
other type.

4.2.1 Port types In figure 2, the port type P2 is operationally compatible
with the port type P1 in regard to all operations (i.e., connect, map, send and
receive). Thus, it is a subtype of P2. It additionally allows reception of all values
of type integer or those of type R1 that are not of type R2.

9 Note: TTCN-3 uses diverting notions of structure equality for different type con-
structs.

10 Note: this does not generally imply memory layout compatibility.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Fig.2 Port Types

type port P1 { in R2; out R3 }
type port P2 { in R1, integer; out R2 } // P2 is also P1

4.2.2 Component Types The component types C2 and C3 in figure 3 allow
all operations (i.e., selection of port p with a result of a port of a subtype of
P1) that are allowed on the component type C1. Again, they allow additional
operations (by having additional or more specific fields). The component type
C4 is the most general type that is operationally compatible to C2 and C3.

Fig. 3 Component Types
type component C1 { port P1 p }
type component C2 { port P1 p; timer t } // C2 is also C1

type component C3 { port P2 p } // C3 is also C1
type component C4 { port P2 p; timer t } // C4 is also C3 and C2

4.2.3 Generic and Behavior Types Generics and behaviors are also ex-
amples for operationally compatible entities. Behaviors are activated as defaults
or invoked by other behaviors and must be able to run on the component they
are executed on. In figure 4, the instantiated functions f1 and f2 can be run on
instances of all 4 component types because they are all specializations of C1.

To conform to operational compatibility, parameters which are used to in-
stantiate a generic must be of a subtype of the generic’s domains.

Fig. 4 Functions, Testcases and Operations
function f1(integer a) runs on C1 {

var R2 r;
p.receive(r1(a, *)) -> value r; // compiler warning

p.send(r2(r.a,r.b)); // possible runtime error
p.receive(float:*); // compiler warning/error

}
function f2(integer a) runs on C1 {

p.send(r2(a, -)); // compiler error

}
testcase t1(integer a) runs on C2 system C1 {

var C3 c := C4.create; // correct
map(c:p, system:p); // correct
connect(mtc:p, c:p); // correct

c.start(f2(a)); // compiler warning
f1(a); // correct

}

In figure 1, the generic template r1 takes an integer value and an integer

template as parameters and yields a template of type R1 as result. f1 in figure

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

4 on the other hand is a generic template which takes an integer value and
yields a behavior which can be run on any component of type C1 and returns
nothing.

5 Types and Their Relation

5.1 The Subtyping Relation

It is possible to define a function v which computes a constraint that must be
solvable for the types to be in a subtype relation. The subtyping relation is an
ordering relation11.

fun v : type× type→ constraint

theory Order[v] -- reflexive, transitive, antisymmetric

5.1.1 Subtyping Constraints A constraint in this context shall be a logical
formula of boolean expressions, i.e. predicates.

For description purpose, we introduce logical quantors on arrays, lifting of
expressions and equality to constraints.

fun ∀ ∃ : array[α]× (α → constraint)→ constraint

fun � �: expression→ constraint

fun = : α × α → constraint

5.2 Special Types

The special types all, none, void and type are not really types that appear in
code of the TTCN-3 language, but they exist implicitely. The void type is used
as the output type of behavior types of behaviors that return nothing. The
type type is the type of type expressions.

All types are subtypes of themselves, and are subtypes of another type, if
their carrier sets are subsets. The largest type all is supertype to all types (i.e.
only operations which are allowed on all types — like equality — are allowed on
that type). The smallest type none represents the type that is a subtype to all
types.12 Since there can be no values of type none, all operations of all types are
allowed on that type. It is used for input and output types of ports.

def none ==
⋃
({})

def t1 v t2 == t1 = t2 ∨ � t1 ⊆ t2 �
def t v all == true

law none v t == true

11 Therefore, special definitions would need to be added to those mentioned here to
assure transitivity.

12 which is implied by the subtype relation for disjunction types

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

5.3 Modified Types

The different type modifiers add roles or functionality to items of the modified
types. Every type can be modified to be optional. Additionally, a type can
be modified to be either variable, constant or template. template types are
implicitely also constant. To ensure this, the constructor functions template,
constant, variable and optional are defined in such a way that they obey
these restrictions.13.

The function basetype strips all modifiers, constraints and implications from
a type, while the modifiers function computes from a given type a function
which adds its modifiers to another type.

fun template constant variable optional basetype : type→ type

fun modifiers : type→ (type→ type)

law ∀ t : type . modifiers(t)(basetype(t))= t

An item of type template(t) can be used as a template of type t. It can
be used for pattern matching. They cannot be used as values14. Every item of a
non-template type can also be used as a template of that type.

An item of type constant(t) is a constant value of type t. Assignments are
not allowed to it.15 In contrast, an item of type variable(t) is always a reference
to an item of type t to which assignments of values of type t are allowed. Every
variable of a type can be used as a constant of that type. Constants and variables
of a type can be used as expressions of that type. In every context (except in
field declarations of value struct types), every expression is either a constant

or variable value or a template.

Finally, an item of type optional(t) may have a value of type t or it may
have the value omit.16

def modified(template , t1) v modified(template , t2) == t1 v t2

def modified(constant , t1) v modified(constant , t2) == t1 v t2

def modified(variable , t1) v modified(constant , t2) == t1 v t2

def modified(variable , t1) v modified(variable , t2) ==
t1 v t2 ∧ t2 v t1

def t1 v modified(template , t2) == t1 v t2

def modified(constant , t1) v t2 == t1 v t2

def modified(optional , t1) v modified(optional , t2) == t1 v t2

def t1 v modified(optional , t2) == t1 v t2

13 Their definition is trivial.
14 e.g. as value parameters
15 Constant values need not to be copied at runtime when passing them as a parameter

that is implicitely declared constant — like generic template parameters.
16 In TTCN-3 this is only used for optional fields in structure types, but it could be

equally well used for defining optional parameters.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

5.4 Number Types

Every integer can be used as a float value.

def integer v float == true

5.5 Structured Types

There are a multitude of structure types in TTCN-3 — mostly derived from its
relationship with ASN.1[5]: records, sets and unions.

5.5.1 Emptiness of Structured Types union types are empty if all their
component types are empty. Other struct types are empty if at least one of
their field types is empty. Thus, if a union type has no fields, it has no values,
while other struct types17 with no fields have exactly one value.

def struct(union , f) v none == ∀ (type ∗ f , λt . t v none)

def struct(k , f) v none ==

∃ (name ∗ f , λn . fieldtype(k , f , n) v none)

5.5.2 Union, Record and Set Types The record, set and union structure
kinds are value types. They are can only be subtypes of other struct types of
the same kind. A record type is a subtype of another one if it declares the
same amount of fields and for every field its type is a subtype to the field at
the same position in the other type.18 For set types the position of the fields is
not important, but only their names. Therefore, for a set type to be a subtype
of another one, it must declare the same fields with the same names and with
subtypes of the corresponding field type in the supertype.19

def struct(union , f1) v struct(union , f2) ==

∀ (name ∗ f1 ,

λ n . fieldtype(union , f1 , n) v fieldtype(union , f2 , n))

def struct(record , f1) v struct(record , f2) ==
|f1| = |f2| ∧ ∀ (0 .. |f1| − 1 , λi . type(f1[i]) v type(f2[i]))

def struct(set , f1) v struct(set , f2) ==
|f1| = |f2| ∧

∀ (name ∗ f1 ,

λ n . fieldtype(set , f1 , n) v fieldtype(set , f2 , n))

17 excepting component types
18 This condition could be relaxed so that the supertype can have less fields than the

subtype and the subtype relation must only apply for these fields.
19 As for records, it would be possible to relax this condition by allowing additional

fields for the subtype. The positions of these additional fields are irrelevant, though.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

5.5.3 Mapping Types All record, set and union types can be denotated
the same way: as a mapping of names to values. For these denotation expressions
another struct kind mapping is introduced. This meta-struct-kind is a subtype
to some of the other struct types under different circumstances.

def struct(mapping , f1) v struct(union , f2) ==
|f1| = 1 ∧ type(f1[0])) v fieldtype(union , f2 , name(f1[0]))

def struct(mapping , f1) v struct(k , f2) ==
� record?(k)∨ set?(k)� ∧

∀ (name ∗ f1 + name ∗ f1 ,

λ n . fieldtype(mapping , f1 , n) v fieldtype(k , f2 , n))

5.5.4 Component Types The component structure kind represents the type
of components on which testcases and functions are executed. A component type
is more special than another component type if all operations that are defined
on the more general type are also defined on the more special type and yield
results of the same type.20 Thus, the component type containing all components
is that which has no fields.

def struct(component , f1) v struct(component , f2) ==

∀ (name ∗ f2 , λn . fieldtype(component , f1 , n)

v
fieldtype(component , f2 , n))

5.5.5 Optional Fields The function fieldtype reflects the different seman-
tics of “missing” fields. For component types a missing field is “possibly present,
but unspecified”. For mapping types it is “implicitely omitted”. For the other
struct types it is undefined.

fun fieldtype : struct× array[declaration]× identifier→ type

def fieldtype(kind , f , n) ==
let i == find(n , name ∗ f)
in if i < 0 then undeffieldtype(kind) else type(f[i]) fi

fun undeffieldtype : struct→ type

def undeffieldtype(component) == all

def undeffieldtype(mapping) == optional(none)

def undeffieldtype(other) == none

5.6 Product Types

The type product
∏

is used for all kinds of inhomogenous lists, like parameter
lists or initializers of inhomogenous records and sets.

20 The only operations that are not defined on all component types are member selection
and execution of functions and testcases on them.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

If one of the component types of a product is none then the whole product is
a subtype of none. list values are of product type and can be used to initialize
items of record or set type. Omitting an item at the end of the list has the
same semantics as setting it to omit. Therefore, the type of an implicitely omitted
element is optional(none).

def
∏

(t1) v none == ∃ (t1 , λt . t v none)

def
∏

(t1) v
∏

(t2) ==
|t1| = |t2| ∧ ∀ (0 .. |t2| − 1 , λi . t1[i] v t2[i])

def
∏

(t) v struct(record , f) ==
� |t| ≤ |f| � ∧

∀ (0 .. |f| − 1 , λi . componenttype(t , i) v type(f[i]))

def
∏

(t1) v list(k , t2) == ∀ (t1 , λt . t v t2)

fun componenttype : array[type]× nat → type

def componenttype(a , i) ==
if i < |a| then a[i] else optional(none) fi

5.7 List Types

list types represent homogenous lists (i.e. lists of elements of the same type),
like strings or arrays.21 list types of every kind are compatible with list types
of the same kind if their element types are compatible. Also, record types are
compatible with list types of record kind if all the record fields are subtype
to the element type of the list type. The same applies for set types and those
list types of set kind.

def list(k1 , t1) v list(k2 , t2) == k1 = k2 ∧ t1 v t2

def struct(record , f1) v list(record , t2) ==

∀ (f1 , λf . type(f) v t2)

def struct(set , f1) v list(set , t2) ==

∀ (f1 , λf . type(f) v t2)

5.8 Disjunction Types

For the input and output types of port types22 a type disjunction
⋃

is needed.
Such a type encompassing all items of the combinded types. If a disjunction of
types shall be a subtype of another type, then all the types of the disjunction
have to be a subtype of that type. In the case that a type should be the subtype
of a disjunction type (of constraint types), the matter is more complicated. 23

def
⋃
(l) v t1 == ∀ (l , λt2 . t2 v t1)

def t1 v
⋃
(l) == ∃ (l , λt2 . t1 v t2) ∨ � t1 ⊆

⋃
l �

21 record of and set of types
22 as well as for the exceptions type of procedural messages which are not explicitely

covered by this paper
23 This is an unsolved problem in general, but doesn’t appear very often in practice.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

5.9 I/O Types

The io-types generic, behavior and port are contravariant in regard to the
subtype relation on their input types and covariant on their output types.

def io(generic , i1 , o1) v io(generic , i2 , o2) ==
i2 v i1 ∧ o1 v o2

def io(behavior , i1 , o1) v io(behavior , i2 , o2) ==
i2 v i1 ∧ o1 v o2

def io(port , i1 , o1) v io(port , i2 , o2) ==
i2 v i1 ∧ o1 v o2 ∧ o2 v o1

This means that a generic that has a result of type integer for every float

value can also be seen as a generic that results in a value of type float for
every integer value.

For behavior types, the input type is the component type the behavior runs
on, so every behavior that runs on a certain type of component is also a behavior
which runs on all components which are more special (i.e., have specializations
of all port and constant types in corresponding fields) of that component type.

For port types, the situation is a bit more complex. For the input the same
applies as for all io types: every port which is able to receive all values of type
R1 or integer is also able to receive all values of type R2 (if R2 is a subtype of
R1).

But, if a specific port is used as a more general port, it still is not allowed
to send more data than in its specific context. Thus, the output also behaves
contravariant for port types. As the output of a port must be a subtype to the
input of all ports it is connected to, port types behave also covariant in regard
to the connect operation. Together, these conditions imply that the output types
of port types must be equivalent for them to be in a subtyping relation.

5.10 Constraint and Runtime Types

constraint types are only easy to handle if they appear as a subtype in a
subtype relation. For the computation of other instances of this subtyping sys-
tem, one is forced to either limit the computation at this point (i.e. stick to the
computation for some manageable constraints), use heuristics or more general
subtyping constraint solvers. 24

def constraint(t1 , p) v t2 ==
t1 v t2 ∨ � constraint(t1 , p) ⊆ t2 �

runtime types are types that are inferred under certain constraints which
are not necessarily true and can be checked only at runtime. The constraining
conditions are propagated to the resulting constraint of the subtyping relation.

24 Although it is outside the scope of this report, it has been successfully implemented
for the template pattern language of TTCN-3 with the exception of the complement

pattern for which computation of a proper type, and thus subtyping, is very difficult.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

def runtime(p , t1) v t2 == p =⇒ t1 v t2

def t1 v runtime(p , t2) == t1 v t2 ∧ p

6 CONCLUSION

In this paper, we have presented a type system for TTCN-3. By extrapolating
from the statements found in the standard document concerning type compati-
bility, we have discovered the two notions of structural and operational subtyping
that are complementary and interact in a complex way, e.g., when applied to
record types. We have defined a unified mathematical model covering both. Thus,
type correctness for data and operations can be inferred with a single algorithm
(see Appendix A). Our model also outlines various possibilities for generaliza-
tion of the TTCN-3 typing rules, which contain some semantically unnecessary
restrictions.

ACKNOWLEDGEMENTS

The work presented herein contains the consequences drawn from a common
project with Ina Schieferdecker, Theofanis Vassiliou-Gioles and others
from TestingTechnologies, Berlin. Thanks also to all in the TTCN-3 mailing list.

Appendix A Type Analysis Algorithm

fun conditional : constraint× type → type

def conditional(true , t) == t

def conditional(p , t) == runtime(p , t)

def type(type(t)) == type

def type(operation(op))= type(op)

fun type : operation→ type

def type(id(i : t)) == t

def type(op@ arg) ==
if io?(t) and generic?(kind(t))

then conditional(type(arg) v from(t)∨
� arg ∈ from(t)�, to(t))

fi where t == basetype(type(op))

def type(e . s) ==
if modified?(type(e))

then modifiers(type(e))(type(valueof(e) . s))

if struct?(t)
then fieldtype(kind(t) , fields(t) , s)

fi where t == basetype(type(e))

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

def type(e[i]) ==
if modified?(type(e))

then modifiers(type(e))(type(valueof(e)[i]))

if list?(t)
then conditional(type(i) v integer∨

� i ∈ integer�, element type(t))

fi where t == basetype(type(e))

def type(valueof(e)) == constant ∗ basetype(type(e))
def type(isvalue(e . s)) ==

if struct?(basetype(type(e))) then constant(bool) fi

Although there are a lot more statements in TTCN-3, we mention here only some
where non-trivial subtyping restrictions apply25. The constraints of the TTCN-3

standard are easily translated into a typechecking function check.

type statement ==
connect(from : expression , to : expression)

invoke(on : expression , behavior : expression)

. . .

fun check : statement→ constraint

def check(connect(p1 , p2)) ==
if io?(t1) ∧ port?(kind(t1)) ∧ io?(t2) ∧ port?(kind(t2))

then output(t1) v input(t2) ∧ output(t2) v input(t1)

fi where (t1 , t2) == (basetype(type(p1)) , basetype(type(p2)))

def check(invoke(c , b)) ==
if struct?(t1) ∧ component?(kind(t1)) ∧

io?(t2) ∧ behavior?(kind(t2))

then t1 v input(t2)

fi where (t1 , t2) == (basetype(type(c)) , basetype(type(b)))

Appendix B Opal Notation Guide

Fig. 5 Keywords

fun declaration of an item’s functionality
def definition of an item
type declaration of a data type (constructors, selectors, discriminators)
law proposition about defined items
theory complex generic proposition (set of laws)

25 The invoke statement executes a behavior on a component.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

Fig. 6 Functions

∗ application of a function to all elements of a structure
◦ function composition

{ } denotation of arrays

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers - Principles, Techniques and
Tools. Addison-Wesley, 1986.

2. ETSI. [DES/MTS-00063-1] TTCN-3: Core Language, 2000.
3. J. Grabowski and D. Hogrefe. Towards the Third Edition of TTCN. In Testing

of Communicating Systems (Proceedings of the TestCom 1999). Kluwer Academic
Publishers, 1999.

4. J. Grabowski, A. Wiles, C. Willcock, and D. Hogrefe. On the Design of the New
Testing Language TTCN-3. In Testing of Communicating Systems (Proceedings of
the TestCom 2000). Kluwer Academic Publishers, 2000.

5. ISO/IEC. [8824] Abstract Syntax Notation One, 2000.
6. ITU-T. [Recommendation Z.100] Specification and Description Language, 2000.
7. C. Jard, T. Jéron, and P. Morel. Verification of Test Suites. In Testing of Commu-

nicating Systems (Proceedings of the TestCom 2000). Kluwer Academic Publishers,
2000.

8. D. L. Parnas. Verbal statement in invited talk (not in proceedings). In Third
International Conference on Formal Engineering Methods. York, 2000.

9. P. Pepper. The Programming Language OPAL (5th corrected edition). Technical
Report 91–10, TU Berlin, June 1991.

 markuslepper.eu

http://markuslepper.eu
http://www.worldcat.org/search?q=

